Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Mater ; 36(28): e2307106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409678

RESUMO

Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography is challenging due to the size and stability constraints of conventional bubble-based agents. Here bicones, truly tiny acoustic contrast agents based on gas vesicles (GVs), a unique class of air-filled protein nanostructures naturally produced in buoyant microbes, are described. It is shown that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.


Assuntos
Meios de Contraste , Ultrassonografia , Animais , Ultrassonografia/métodos , Meios de Contraste/química , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Linhagem Celular Tumoral , Acústica
2.
IEEE Trans Biomed Eng ; 71(1): 367-374, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37590110

RESUMO

OBJECTIVE: Ultrasound elasticity imaging is a class of ultrasound techniques with applications that include the detection of malignancy in breast lesions. Although elasticity imaging traditionally assumes linear elasticity, the large strain elastic response of soft tissue is known to be nonlinear. This study evaluates the nonlinear response of breast lesions for the characterization of malignancy using force measurement and force-controlled compression during ultrasound imaging. METHODS: 54 patients were recruited for this study. A custom force-instrumented compression device was used to apply a controlled force during ultrasound imaging. Motion tracking derived strain was averaged over lesion or background ROIs and matched with compression force. The resulting force-matched strain was used for subsequent analysis and curve fitting. RESULTS: Greater median differences between malignant and benign lesions were observed at higher compressional forces (p-value < 0.05 for compressional forces of 2-6N). Of three candidate functions, a power law function produced the best fit to the force-matched strain. A statistically significant difference in the scaling parameter of the power function between malignant and benign lesions was observed (p-value = 0.025). CONCLUSIONS: We observed a greater separation in average lesion strain between malignant and benign lesions at large compression forces and demonstrated the characterization of this nonlinear effect using a power law model. Using this model, we were able to differentiate between malignant and benign breast lesions. SIGNIFICANCE: With further development, the proposed method to utilize the nonlinear elastic response of breast tissue has the potential for improving non-invasive lesion characterization for potential malignancy.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Humanos , Feminino , Técnicas de Imagem por Elasticidade/métodos , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Elasticidade , Ultrassonografia Mamária/métodos , Diagnóstico Diferencial , Sensibilidade e Especificidade
3.
Med Phys ; 48(7): 3540-3558, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33942320

RESUMO

PURPOSE: Contrast-free visualization of microvascular blood flow (MBF) using ultrasound can play a valuable role in diagnosis and detection of diseases. In this study, we demonstrate the importance of quantifying ensemble coherence for robust MBF imaging. We propose a novel approach to quantify ensemble coherence by estimating the local spatiotemporal correlation (LSTC) image, and evaluate its efficacy through simulation and in vivo studies. METHODS: The in vivo patient studies included three volunteers with a suspicious breast tumor, 15 volunteers with a suspicious thyroid tumor, and two healthy volunteers for renal MBF imaging. The breast data displayed negligible prior motion and were used for simulation analysis involving synthetically induced motion, to assess its impact on ensemble coherency and motion artifacts in MBF images. The in vivo thyroid data involved complex physiological motion due to its proximity to the pulsating carotid artery, which was used to assess the in vivo efficacy of the proposed technique. Further, in vivo renal MBF images demonstrated the feasibility of using the proposed ensemble coherence metric for curved array-based MBF imaging involving phase conversion. All ultrasound data were acquired at high imaging frame rates and the tissue signal was suppressed using spatiotemporal clutter filtering. Thyroid tissue motion was estimated using two-dimensional normalized cross correlation-based speckle tracking, which was subsequently used for ensemble motion correction. The coherence of the MBF image was quantified based on Casorati correlation of the Doppler ensemble. RESULTS: The simulation results demonstrated that an increase in ensemble motion corresponded with a decrease in ensemble coherency, which reciprocally degraded the MBF images. Further the data acquired from breast tumors demonstrated higher ensemble coherency than that from thyroid tumors. Motion correction improved the coherence of the thyroid MBF images, which substantially improved its visualization. The proposed coherence metrics were also useful in assessing the ensemble coherence for renal MBF imaging. The results also demonstrated that the proposed coherence metric can be reliably estimated from downsampled ensembles (by up to 90 % ), thus allowing improved computational efficiency for potential applications in real-time MBF imaging. CONCLUSIONS: This pilot study demonstrates the importance of assessing ensemble coherency in contrast-free MBF imaging. The proposed LSTC image quantified coherence of the Doppler ensemble for robust MBF imaging. The results obtained from this pilot study are promising, and warrant further development and in vivo validation.


Assuntos
Microvasos , Ultrassonografia Doppler , Artefatos , Humanos , Microvasos/diagnóstico por imagem , Projetos Piloto , Ultrassonografia
4.
IEEE Trans Med Imaging ; 40(2): 748-757, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33151880

RESUMO

Compression elastography allows the precise measurement of large deformations of soft tissue in vivo. From an image sequence showing tissue undergoing large deformation, an inverse problem for both the linear and nonlinear elastic moduli distributions can be solved. As part of a larger clinical study to evaluate nonlinear elastic modulus maps (NEMs) in breast cancer, we evaluate the repeatability of linear and nonlinear modulus maps from repeat measurements. Within the cohort of subjects scanned to date, 20 had repeat scans. These repeated scans were processed to evaluate NEM repeatability. In vivo data were acquired by a custom-built, digitally controlled, uniaxial compression device with force feedback from the pressure-plate. RF-data were acquired using plane-wave imaging, at a frame-rate of 200 Hz, with a ramp-and-hold compressive force of 8N, applied at 8N/sec. A 2D block-matching algorithm was used to obtain sample-level displacement fields which were then tracked at subsample resolution using 2D cross correlation. Linear and nonlinear elasticity parameters in a modified Veronda-Westmann model of tissue elasticity were estimated using an iterative optimization method. For the repeated scans, B-mode images, strain images, and linear and nonlinear elastic modulus maps are measured and compared. Results indicate that when images are acquired in the same region of tissue and sufficiently high strain is used to recover nonlinearity parameters, then the reconstructed modulus maps are consistent.


Assuntos
Mama , Técnicas de Imagem por Elasticidade , Algoritmos , Mama/diagnóstico por imagem , Módulo de Elasticidade , Elasticidade , Humanos , Imagens de Fantasmas
6.
Breast ; 54: 248-255, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33188991

RESUMO

PURPOSE: To investigate the diagnostic role of new metrics, defined as individualized-thresholding of Shear Wave Elastography (SWE) parameters, in association with clinical factors (such as age, mammographic density, lesion size and depth) and the BI-RADS features in differentiating benign from malignant breast lesions. METHODS: Of 644 consecutive patients (median age, 55 years), prospectively referred for evaluation, 659 ultrasound detected breast lesions underwent SWE measurements. Multivariable logistic regression analysis was used to estimate the probability of malignancy. The area under the curve (AUC), optimal cutoff value, and the corresponding sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were determined. RESULTS: 265 of 659 (40.2%) masses were malignant. Using two Emean cutoffs, 69.6 kPa for large superficial lesions (size >10 mm, depth ≤5 mm) and 39.2 kPa for the rest, the overall specificity, sensitivity, PPV and NPV were 92.6%, 86.8%, 88.8% and 91.3%, respectively. Combining multiple factors, including Emean with two cutoffs, age and BI-RADS, the new ROC curve based on the malignancy probability calculation showed the highest AUC (0.954, 95% CI: 0.938-0.969). Using the optimal probability threshold of 0.514, the corresponding specificity, sensitivity, PPV and NPV were 92.9%, 89.1%, 89.4% and 92.7%, respectively. CONCLUSIONS: The false-positive rate can be significantly reduced when applying two Emean cutoffs based on lesion size and depth. Moreover, the combination of age, Emean with two cutoffs and BI-RADS can further reduce the false negatives and false positives. Overall, this multifactorial analysis improves the specificity of ultrasound while maintaining a high sensitivity.


Assuntos
Neoplasias da Mama/diagnóstico , Técnicas de Imagem por Elasticidade/estatística & dados numéricos , Medicina de Precisão/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Mama/diagnóstico por imagem , Mama/patologia , Diagnóstico Diferencial , Técnicas de Imagem por Elasticidade/métodos , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia Mamária , Adulto Jovem
7.
Ultrasound Med Biol ; 46(12): 3393-3403, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32917470

RESUMO

We applied sub-Hertz analysis of viscoelasticity (SAVE) to differentiate breast masses in pre-biopsy patients. Tissue response during external ramp-and-hold stress was ultrasonically detected. Displacements were used to acquire tissue viscoelastic parameters. The fast instantaneous response and slow creep-like deformations were modeled as the response of a linear standard solid from which viscoelastic parameters were estimated. These parameters were used in a multi-variable classification framework to differentiate malignant from benign masses identified by pathology. When employing all viscoelasticity parameters, SAVE resulted in 71.43% accuracy in differentiating lesions. When combined with ultrasound features and lesion size, accuracy was 82.24%. Adding a quality metric based on uniaxial motion increased the accuracy to 81.25%. When all three were combined with SAVE, accuracy was 91.3%. These results confirm the utility of SAVE as a robust ultrasound-based diagnostic tool for non-invasive differentiation of breast masses when used as stand-alone biomarkers or in conjunction with ultrasonic features.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Diagnóstico Diferencial , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Viscosidade
8.
PLoS One ; 15(1): e0226994, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929558

RESUMO

OBJECTIVES: To evaluate the predictive performance of comb-push ultrasound shear elastography for the differentiation of reactive and metastatic axillary lymph nodes. METHODS: From June 2014 through September 2018, 114 female volunteers (mean age 58.1±13.3 years; range 28-88 years) with enlarged axillary lymph nodes identified by palpation or clinical imaging were prospectively enrolled in the study. Mean, standard deviation and maximum shear wave elastography parameters from 117 lymph nodes were obtained and compared to fine needle aspiration biopsy results. Mann-Whitney U test and ROC curve analysis were performed. RESULTS: The axillary lymph nodes were classified as reactive or metastatic based on the fine needle aspiration outcomes. A statistically significant difference between reactive and metastatic axillary lymph nodes was observed based on comb-push ultrasound shear elastography (CUSE) results (p<0.0001) from mean and maximum elasticity values. Mean elasticity showed the best separation with a ROC analysis resulting in 90.5% sensitivity, 94.4% specificity, 0.97 area under the curve, 95% positive predictive value, and 89.5% negative predictive value with a 30.2-kPa threshold. CONCLUSIONS: CUSE provided a quantifiable parameter that can be used for the assessment of enlarged axillary lymph nodes to differentiate between reactive and metastatic processes.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Linfonodos/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Valor Preditivo dos Testes , Ultrassonografia Mamária/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Biópsia por Agulha Fina/normas , Diagnóstico Diferencial , Técnicas de Imagem por Elasticidade/normas , Feminino , Humanos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Ultrassonografia Mamária/normas
9.
Phys Med Biol ; 64(24): 245015, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31855574

RESUMO

Non-invasive, contrast-free imaging of small vessel blood flow is diagnostically invaluable for detection, diagnosis and monitoring of disease. Recent advances in ultrafast imaging and tissue clutter-filtering have considerably improved the sensitivity of power Doppler (PD) imaging in detecting small vessel blood flow. However, suppression of tissue clutter exposes the depth-dependent time-gain compensated noise bias that noticeably degrades the PD image. We hypothesized that background suppression of PD images based on noise bias estimated from the entire clutter-filtered singular value spectrum can considerably improve flow signal visualization compared to currently existing techniques. To test our hypothesis, in vivo experiments were conducted on suspicious breast lesions in 10 subjects and deep-seated hepatic and renal microvasculatures in four healthy volunteers. Ultrasound PD images were acquired using a clinical ultrasound scanner, implemented with compounded plane wave imaging. The time gain compensated noise field was computed from the clutter-filtered Doppler ensemble (CFDE) based on its local spatio-temporal correlation, combined with low-rank signal estimation. Subsequently, the background bias in the PD images was suppressed by subtracting the estimated noise field. Background-suppressed PD images obtained using the proposed technique substantially improved visualization of the blood flow signal. The background bias in the noise suppressed PD images varied <0.6 dB, independent of depth, which otherwise increased up to 13.8 dB. Further, the results demonstrated that the proposed technique efficaciously suppressed the background noise bias associated with smaller Doppler ensembles, which are challenging due to increased overlap between blood flow and noise components in the singular value spectrum. These preliminary results demonstrate the utility of the proposed technique to improve the visualization of small vessel blood flow in contrast-free PD images. The results of this feasibility study were encouraging, and warrant further development and additional in vivo validation.


Assuntos
Meios de Contraste/química , Processamento de Imagem Assistida por Computador/métodos , Microvasos/diagnóstico por imagem , Ultrassonografia Doppler/métodos , Mama/irrigação sanguínea , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
10.
Ultrasound Med Biol ; 45(4): 1010-1018, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718145

RESUMO

Reliable assessment of small vessel blood flow in the thyroid, without using any contrast agents, can be challenging because of increased physiological motion resulting from its proximity to the pulsating carotid artery. In this study, we hypothesized that correction of tissue motion prior to singular value decomposition (SVD)-based clutter filtering can improve the coherency of the tissue components and, thus, may allow better clutter suppression and visualization of small vessels in the thyroid. We corroborated this hypothesis by conducting phantom and in vivo studies using a clinical ultrasound scanner implemented with compounded plane wave imaging. The phantom studies were conducted using a homogeneous tissue-mimicking phantom to study the impact of motion on the covariance of the spatiotemporal Doppler data, in the absence of blood activity. The non-invasive in vivo study was conducted on a 74-y-old woman with a thyroid nodule suspicious of malignancy. A rigid body-based motion correction was performed using tissue displacements obtained from 2-D normalized cross-correlation-based speckle tracking. Subsequently, the power Doppler images were computed using SVD-based spatiotemporal clutter filtering. The results from the phantom study revealed that motion can considerably reduce the covariance of the spatiotemporal data and, thus, increase the rank of the tissue components. When the phantom was subjected to a total translation displacement of 6 pixels over the entire ensemble, in each direction (axial and lateral), the covariance dropped by more than 25%. The results obtained from the non-invasive in vivo study indicated that visualization of small vessel blood flow improved with motion correction of the power Doppler ensemble. The contrast-to-noise ratio of the blood signal in motion-corrected power Doppler images was considerably higher (8.17 and 8.32 dB), compared with that obtained using the standard SVD approach at an optimal threshold (0.87 and 4.33 dB) and a lower singular value threshold (1.92 and 3.05 dB). Further, the covariance of the in vivo thyroid spatiotemporal data increased by approximately 10% with motion correction. These preliminary results indicate that motion correction can be used to improve the visualization of small vessel blood flow in the thyroid, without using any contrast agents. The results of this feasibility study were encouraging, and warrant further development and more in vivo validation in moving tissues and organs.


Assuntos
Processamento de Sinais Assistido por Computador , Glândula Tireoide/irrigação sanguínea , Glândula Tireoide/diagnóstico por imagem , Ultrassonografia/métodos , Idoso , Velocidade do Fluxo Sanguíneo , Feminino , Humanos , Imagens de Fantasmas
11.
Sci Rep ; 8(1): 15318, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333509

RESUMO

Singular value based spatiotemporal clutter filtering (SVD-STF) can significantly improve the sensitivity of blood flow imaging in small vessels without using contrast agents. However, despite effective clutter filtering, large physiological motion in thyroid imaging can impact coherent integration of the Doppler signal and degrade the visualization of the underlying vasculature. In this study, we hypothesize that motion correction of the clutter filtered Doppler ensemble, prior to the power Doppler estimation, can considerably improve the visualization of smalls vessels in suspicious thyroid nodules. We corroborated this hypothesis by conducting in vivo experiments on 10 female patients in the age group 44-82 yrs, with at least one thyroid nodule suspicious of malignancy, with recommendation for fine needle aspiration biopsy. Ultrasound images were acquired using a clinical ultrasound scanner, implemented with compounded plane wave imaging. Axial and lateral displacements associated with the thyroid nodules were estimated using 2D normalized cross-correlation. Subsequently, the tissue clutter associated with the Doppler ensemble was suppressed using SVD-STF. Motion correction of the clutter-filtered Doppler ensemble was achieved using a spline based sub-pixel interpolation. The results demonstrated that power Doppler images of thyroid nodules were noticeably degraded due to large physiological motion of the pulsating carotid artery in the proximity. The resultant power Doppler images were corrupted with signal distortion, motion blurring and occurrence of artificial shadow vessels and displayed visibly low signal-to-background contrast. In contrast, the power Doppler images obtained from the motion corrected ultrasound data addressed the issue and considerabley improved the visualization of blood flow. The signal-to-noise ratio and the contrast-to-noise ratio increased by up to 15.2 dB and 12.1 dB, respectively. Across the ten subjects, the highest improvement was observed for the nodule with the largest motion. These preliminary results show the ability of using motion correction to improve the visualization of small vessel blood flow in thyroid, without using any contrast agents. The results of this feasibility study were encouraging, and warrant further development and more in vivo validation in moving tissues and organs.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Processamento de Sinais Assistido por Computador , Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia Doppler/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo , Vasos Sanguíneos/fisiologia , Meios de Contraste/química , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Movimento (Física) , Reprodutibilidade dos Testes , Nódulo da Glândula Tireoide/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA