Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 76(6): 1980-1991, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012204

RESUMO

Hypertension remains a major health problem in Western Societies, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs. Mitochondrial dysfunction contributes to hypertension, and mitochondria-targeted agents can potentially improve treatment of hypertension. We have proposed that mitochondrial oxidative stress produces reactive dicarbonyl lipid peroxidation products, isolevuglandins, and that scavenging of mitochondrial isolevuglandins improves vascular function and reduces hypertension. To test this hypothesis, we have studied the accumulation of mitochondrial isolevuglandins-protein adducts in patients with essential hypertension and Ang II (angiotensin II) model of hypertension using mass spectrometry and Western blot analysis. The therapeutic potential of targeting mitochondrial isolevuglandins was tested by the novel mitochondria-targeted isolevuglandin scavenger, mito2HOBA. Mitochondrial isolevuglandins in arterioles from hypertensive patients were 250% greater than in arterioles from normotensive subjects, and ex vivo mito2HOBA treatment of arterioles from hypertensive subjects increased deacetylation of a key mitochondrial antioxidant, SOD2 (superoxide dismutase 2). In human aortic endothelial cells stimulated with Ang II plus TNF (tumor necrosis factor)-α, mito2HOBA reduced mitochondrial superoxide and cardiolipin oxidation, a specific marker of mitochondrial oxidative stress. In Ang II-infused mice, mito2HOBA diminished mitochondrial isolevuglandins-protein adducts, raised Sirt3 (sirtuin 3) mitochondrial deacetylase activity, reduced vascular superoxide, increased endothelial nitric oxide, improved endothelium-dependent relaxation, and attenuated hypertension. Mito2HOBA preserved mitochondrial respiration, protected ATP production, and reduced mitochondrial permeability pore opening in Ang II-infused mice. These data support the role of mitochondrial isolevuglandins in endothelial dysfunction and hypertension. We conclude that scavenging of mitochondrial isolevuglandins may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Assuntos
Arteríolas/fisiopatologia , Pressão Sanguínea/fisiologia , Hipertensão Essencial/fisiopatologia , Lipídeos/análise , Mitocôndrias/metabolismo , Estresse Oxidativo , Angiotensina II , Animais , Antioxidantes/metabolismo , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Hipertensão Essencial/induzido quimicamente , Hipertensão Essencial/metabolismo , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Lipídeos/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
2.
Hypertension ; 67(6): 1218-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067720

RESUMO

Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension.


Assuntos
Ciclofilinas/metabolismo , Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Vasodilatação/fisiologia , Análise de Variância , Angiotensina II/farmacologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Peptidil-Prolil Isomerase F , Modelos Animais de Doenças , Endotélio Vascular/citologia , Hipertensão/fisiopatologia , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Distribuição Aleatória , Compostos de Espiro/farmacologia , Superóxidos/metabolismo
3.
J Exp Med ; 213(3): 337-54, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26926996

RESUMO

Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease, a chronic inflammatory condition causing high morbidity and mortality. Here, we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD), overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1ß, driving systemic and tissue inflammation. In patient-derived monocytes and macrophages, increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species, which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3, thus boosting IL-6 and IL-1ß production. Reducing glycolysis, scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence, PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction, oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.


Assuntos
Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Glicólise , Inflamação/patologia , Piruvato Quinase/metabolismo , Idoso , Respiração Celular , Doença da Artéria Coronariana/enzimologia , Feminino , Glucose/metabolismo , Humanos , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Macrófagos/metabolismo , Masculino , Mitocôndrias/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Fenótipo , Fosforilação , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Antioxid Redox Signal ; 20(2): 281-94, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24053613

RESUMO

AIMS: Angiotensin II (AngII)-induced superoxide (O2(•-)) production by the NADPH oxidases and mitochondria has been implicated in the pathogenesis of endothelial dysfunction and hypertension. In this work, we investigated the specific molecular mechanisms responsible for the stimulation of mitochondrial O2(•-) and its downstream targets using cultured human aortic endothelial cells and a mouse model of AngII-induced hypertension. RESULTS: Western blot analysis showed that Nox2 and Nox4 were present in the cytoplasm but not in the mitochondria. Depletion of Nox2, but not Nox1, Nox4, or Nox5, using siRNA inhibits AngII-induced O2(•-) production in both mitochondria and cytoplasm. Nox2 depletion in gp91phox knockout mice inhibited AngII-induced cellular and mitochondrial O2(•-) and attenuated hypertension. Inhibition of mitochondrial reverse electron transfer with malonate, malate, or rotenone attenuated AngII-induced cytoplasmic and mitochondrial O2(•-) production. Inhibition of the mitochondrial ATP-sensitive potassium channel (mitoK(+)ATP) with 5-hydroxydecanoic acid or specific PKCɛ peptide antagonist (EAVSLKPT) reduced AngII-induced H2O2 in isolated mitochondria and diminished cytoplasmic O2(•-). The mitoK(+)ATP agonist diazoxide increased mitochondrial O2(•-), cytoplasmic c-Src phosphorylation and cytoplasmic O2(•-) suggesting feed-forward regulation of cellular O2(•-) by mitochondrial reactive oxygen species (ROS). Treatment of AngII-infused mice with malate reduced blood pressure and enhanced the antihypertensive effect of mitoTEMPO. Mitochondria-targeted H2O2 scavenger mitoEbselen attenuated redox-dependent c-Src and inhibited AngII-induced cellular O2(•-), diminished aortic H2O2, and reduced blood pressure in hypertensive mice. INNOVATION AND CONCLUSIONS: These studies show that Nox2 stimulates mitochondrial ROS by activating reverse electron transfer and both mitochondrial O2(•-) and reverse electron transfer may represent new pharmacological targets for the treatment of hypertension.


Assuntos
Angiotensina II/metabolismo , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Superóxidos/metabolismo , Angiotensina II/farmacologia , Animais , Proteína Tirosina Quinase CSK , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/farmacologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Transporte de Elétrons , Células Endoteliais/metabolismo , Inativação Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão/fisiopatologia , Malatos/metabolismo , Malatos/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , NADPH Oxidase 2 , NADPH Oxidases/genética , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas , Transporte Proteico , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Quinases da Família src/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 305(8): H1131-40, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23955717

RESUMO

Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Células Endoteliais/fisiologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Estresse Oxidativo/fisiologia , Superóxidos , Animais , Aorta/citologia , Pressão Sanguínea/efeitos dos fármacos , Respiração Celular/fisiologia , Células Cultivadas , Diazóxido/farmacologia , Complexo I de Transporte de Elétrons/fisiologia , Complexo II de Transporte de Elétrons/fisiologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidase 2 , Canais de Potássio/metabolismo , Vasodilatadores/farmacologia
6.
Am J Physiol Regul Integr Comp Physiol ; 305(2): R98-100, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23657641

RESUMO

In the past decade, it has become clear that reactive oxygen species (ROS) and inflammation play an important role in the development of hypertension. Scavenging of mitochondrial superoxide and blocking either IL-17 or tumor necrosis factor-α (TNF-α) attenuates hypertension. T-cells, critical for development of hypertension, once activated intensively produce cytokines, proliferate, and differentiate. Thus T-cell activation leads to expanded energy demand. To fulfill these needs, T-cells through tightly regulated mechanisms, supported by mitochondrial ROS (mtROS), alter their metabolic phenotype. In this review we summarize data and show evidence supporting new concept that mtROS directly contributes to prohypertensive response of immune cells.


Assuntos
Hipertensão/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Hipertensão/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Mitocôndrias/imunologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Antioxid Redox Signal ; 19(4): 344-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23373855

RESUMO

It has been previously suggested that overexpression of mitochondrial superoxide dismutase (SOD) attenuates cancer development; however, the exact mechanism remains unclear. In this work, we have studied the direct effect of the mitochondria-targeted superoxide scavenger, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), on B16-F0 mouse melanoma cells and tumor growth in a nude mouse model of human melanoma. We show that scavenging of mitochondrial superoxide inhibited cell growth, reduced viability, and induced apoptosis in melanoma cells, but did not affect nonmalignant skin fibroblasts. Diminished mitochondrial superoxide inhibited redox-dependent Akt, restored activity of mitochondrial pyruvate dehydrogenase, and reduced HIF1-α and lactate dehydrogenase expression in cancer cells. Suppression of glycolysis in mitoTEMPO-treated melanoma cells resulted in a significant drop of cellular adenosine-5'-triphosphate and induced cell death. In vivo mitoTEMPO treatment effectively suppressed growth of established tumor in the mouse model of human melanoma. Therefore, our data lead to the hypothesis that scavenging of mitochondrial superoxide selectively inhibits redox-sensitive survival and metabolic pathways, resulting in cancer cell death. In contrast to existing anticancer therapies, inhibition of mitochondrial superoxide may represent a novel specific anticancer treatment with reduced cytotoxic side effects.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Superóxidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
Cancer Res ; 67(3): 1282-90, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283165

RESUMO

Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)-dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca(2+) concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, tamoxifen hampers mitochondrial respiration, releases cytochrome c, elevates mitochondrial lipid peroxidation, increases protein tyrosine nitration of certain mitochondrial proteins, decreases the catalytic activity of succinyl-CoA:3-oxoacid CoA-transferase, and induces aggregation of mitochondria. The present report suggests a critical role for mtNOS in apoptosis induced by tamoxifen.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Tamoxifeno/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/enzimologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Feminino , Humanos , Peroxidação de Lipídeos , Mitocôndrias/enzimologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ácido Peroxinitroso/biossíntese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA