Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Genome Med ; 16(1): 51, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566128

RESUMO

BACKGROUND: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Microglia/metabolismo , Ecossistema , Xenoenxertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fenótipo , Modelos Animais de Doenças , Células Dendríticas/metabolismo , Microambiente Tumoral/genética
2.
Heliyon ; 10(5): e27515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562501

RESUMO

We provide in this paper a comprehensive comparison of various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas. We evaluate the generalizability of out-of-domain ImageNet representations for a target domain of histopathological images, and study the impact of in-domain adaptation using self-supervised and multi-task learning approaches for pretraining the models using the medium-to-large scale datasets of histopathological images. A semi-supervised learning approach is furthermore proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images (WSI). The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning with balanced accuracy of 96.91% and F1-score 97.07%, and minimizing the pathologist's efforts for annotation. Finally, we provide a visualization tool working at WSI level which generates heatmaps that highlight tumor areas; thus, providing insights to pathologists concerning the most informative parts of the WSI.

3.
Allergy ; 79(6): 1419-1439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263898

RESUMO

Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.


Assuntos
Biomarcadores , Glioma , Hipersensibilidade , Humanos , Glioma/imunologia , Glioma/etiologia , Glioma/diagnóstico , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Hipersensibilidade/etiologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/etiologia , Suscetibilidade a Doenças , Animais
4.
J Extracell Vesicles ; 12(10): e12363, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759347

RESUMO

Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Melanoma , MicroRNAs , Humanos , Astrócitos , Interleucina-6 , Interleucina-8 , Simulação de Acoplamento Molecular , MicroRNAs/genética , Microambiente Tumoral
5.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372972

RESUMO

By generating protein diversity, alternative splicing provides an important oncogenic pathway. Isocitrate dehydrogenase (IDH) 1 and 2 mutations and 1p/19q co-deletion have become crucial for the novel molecular classification of diffuse gliomas, which also incorporates DNA methylation profiling. In this study, we have carried out a bioinformatics analysis to examine the impact of the IDH mutation, as well as the 1p/19q co-deletion and the glioma CpG island methylator phenotype (G-CIMP) status on alternative splicing in a cohort of 662 diffuse gliomas from The Cancer Genome Atlas (TCGA). We identify the biological processes and molecular functions affected by alternative splicing in the various glioma subgroups and provide evidence supporting the important contribution of alternative splicing in modulating epigenetic regulation in diffuse gliomas. Targeting the genes and pathways affected by alternative splicing might provide novel therapeutic opportunities against gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigênese Genética , Processamento Alternativo , Glioma/genética , Glioma/terapia , Mutação , Aberrações Cromossômicas , Fenótipo , Isocitrato Desidrogenase/genética
6.
Cell Rep ; 42(7): 112696, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379213

RESUMO

Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.


Assuntos
Melanoma , Transcriptoma , Humanos , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Purinérgicos P2X7/metabolismo , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
7.
Blood ; 141(26): 3166-3183, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37084385

RESUMO

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Proibitinas , Genes myc , RNA Mensageiro/genética
8.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945572

RESUMO

Background: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. Methods: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA-sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. Results: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. Conclusions: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.

9.
Allergy ; 78(3): 682-696, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36210648

RESUMO

BACKGROUND: Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection. METHODS: An immunocompetent mouse model of allergic airway inflammation (AAI) was initiated before intracranial implantation of mouse GBM cells (GL261). RAG1-KO mice served to assess tumor growth in a model deficient for adaptive immunity. Tumor development was monitored by MRI. Microglia were isolated for functional analyses and RNA-sequencing. Peripheral as well as tumor-associated immune cells were characterized by flow cytometry. The impact of allergy-related microglial genes on patient survival was analyzed by Cox regression using publicly available datasets. RESULTS: We found that allergy establishment in mice delayed tumor engraftment in the brain and reduced tumor growth resulting in increased mouse survival. AAI induced a transcriptional reprogramming of microglia towards a pro-inflammatory-like state, uncovering a microglia gene signature, which correlated with limited local immunosuppression in glioma patients. AAI increased effector memory T-cells in the circulation as well as tumor-infiltrating CD4+ T-cells. The survival benefit conferred by AAI was lost in mice devoid of adaptive immunity. CONCLUSION: Our results demonstrate that AAI limits both tumor take and progression in mice, providing a preclinical model to study the impact of allergy on GBM susceptibility and prognosis, respectively. We identify a potentiation of local and adaptive systemic immunity, suggesting a reciprocal crosstalk that orchestrates allergy-induced immune protection against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Hipersensibilidade , Camundongos , Animais , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Microglia/patologia , Hipersensibilidade/patologia , Camundongos Endogâmicos C57BL
10.
Blood Cancer Discov ; 4(1): 54-77, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36108149

RESUMO

Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE: sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Vesículas Extracelulares , Leucemia Linfocítica Crônica de Células B , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/genética , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Transcriptoma , Imunidade , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Microambiente Tumoral/genética
11.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632759

RESUMO

Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.


Assuntos
Galectina 1 , Glioblastoma , Parvovirus H-1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Linhagem Celular Tumoral , Galectina 1/genética , Galectina 1/metabolismo , Glioblastoma/terapia , Parvovirus H-1/fisiologia , Humanos , Recidiva Local de Neoplasia , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas , Neoplasias Pancreáticas
12.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680205

RESUMO

Endometrial cancer (EC) mortality is directly associated with the presence of prognostic factors. Current stratification systems are not accurate enough to predict the outcome of patients. Therefore, identifying more accurate prognostic EC biomarkers is crucial. We aimed to validate 255 prognostic biomarkers identified in multiple studies and explore their prognostic application by analyzing them in TCGA and CPTAC datasets. We analyzed the mRNA and proteomic expression data to assess the statistical prognostic performance of the 255 proteins. Significant biomarkers related to overall survival (OS) and recurrence-free survival (RFS) were combined and signatures generated. A total of 30 biomarkers were associated either to one or more of the following prognostic factors: histological type (n = 15), histological grade (n = 6), FIGO stage (n = 1), molecular classification (n = 16), or they were associated to OS (n = 11), and RFS (n = 5). A prognostic signature composed of 11 proteins increased the accuracy to predict OS (AUC = 0.827). The study validates and identifies new potential applications of 30 proteins as prognostic biomarkers and suggests to further study under-studied biomarkers such as TPX2, and confirms already used biomarkers such as MSH6, MSH2, or L1CAM. These results are expected to advance the quest for biomarkers to accurately assess the risk of EC patients.

13.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500463

RESUMO

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Autoantígeno Ku/metabolismo , Fatores de Processamento de RNA/metabolismo , Alquilantes/efeitos adversos , Alquilantes/farmacologia , Camptotecina/efeitos adversos , Camptotecina/farmacologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/metabolismo , Glioblastoma/tratamento farmacológico , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Interferência de RNA , Fatores de Processamento de RNA/genética , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Temozolomida/efeitos adversos , Temozolomida/farmacologia
14.
iScience ; 24(6): 102686, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34189442

RESUMO

C/EBPα represents a paradigm intrinsically disordered transcription factor containing short linear motifs and post-translational modifications (PTM). Unraveling C/EBPα protein interaction networks is a prerequisite for understanding the multi-modal functions of C/EBPα in hematopoiesis and leukemia. Here, we combined arrayed peptide matrix screening (PRISMA) with BioID to generate an in vivo validated and isoform specific interaction map of C/EBPα. The myeloid C/EBPα interactome comprises promiscuous and PTM-regulated interactions with protein machineries involved in gene expression, epigenetics, genome organization, DNA replication, RNA processing, and nuclear transport. C/EBPα interaction hotspots coincide with homologous conserved regions of the C/EBP family that also score as molecular recognition features. PTMs alter the interaction spectrum of C/EBP-motifs to configure a multi-valent transcription factor hub that interacts with multiple co-regulatory components, including BAF/SWI-SNF or Mediator complexes. Combining PRISMA and BioID is a powerful strategy to systematically explore the PTM-regulated interactomes of intrinsically disordered transcription factors.

15.
Cancers (Basel) ; 13(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067180

RESUMO

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, displaying frequent resistance to standard therapies. Profiling DNA repair and cell cycle gene expression has recently been proposed as a strategy to classify adult glioblastomas. To improve our understanding of the DNA damage response pathways that operate in pHGGs and the vulnerabilities that these pathways might expose, we sought to identify and characterize a specific DNA repair and cell-cycle gene expression signature of pHGGs. METHODS: Transcriptomic analyses were performed to identify a DNA repair and cell-cycle gene expression signature able to discriminate pHGGs (n = 6) from low-grade gliomas (n = 10). This signature was compared to related signatures already established. We used the pHGG signature to explore already transcriptomic datasets of DIPGs and sus-tentorial pHGGs. Finally, we examined the expression of key proteins of the pHGG signature in 21 pHGG diagnostic samples and nine paired relapses. Functional inhibition of one DNA repair factor was carried out in four patients who derived H3.3 K27M mutant cell lines. RESULTS: We identified a 28-gene expression signature of DNA repair and cell cycle that clustered pHGGs cohorts, in particular sus-tentorial locations, in two groups. Differential protein expression levels of PARP1 and XRCC1 were associated to TP53 mutations and TOP2A amplification and linked significantly to the more radioresistant pHGGs displaying the worst outcome. Using patient-derived cell lines, we showed that the PARP-1/XRCC1 expression balance might be correlated with resistance to PARP1 inhibition. CONCLUSION: We provide evidence that PARP1 overexpression, associated to XRCC1 expression, TP53 mutations, and TOP2A amplification, is a new theranostic and potential therapeutic target.

16.
Nat Commun ; 11(1): 6366, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311477

RESUMO

The infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive. At the mechanistic level, we find that ZFAND3 activity requires nuclear localization and integral zinc-finger domains. Our findings indicate that ZFAND3 acts within a nuclear protein complex to activate gene transcription and regulates the promoter of invasion-related genes such as COL6A2, FN1, and NRCAM. Further investigation in ZFAND3 function in GBM and other invasive cancers is warranted.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glioblastoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Colágeno Tipo VI/genética , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/genética , Domínios Proteicos , Transcriptoma
17.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009951

RESUMO

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Xenoenxertos/imunologia , Organoides/patologia , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/genética , Xenoenxertos/efeitos dos fármacos , Humanos , Camundongos , Recidiva Local de Neoplasia/genética , Organoides/imunologia , Medicina de Precisão/métodos , Ratos
18.
Nat Protoc ; 15(10): 3240-3263, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978601

RESUMO

DNA methylation profiling offers unique insights into human development and diseases. Often the analysis of complex tissues and cell mixtures is the only feasible option to study methylation changes across large patient cohorts. Since DNA methylomes are highly cell type specific, deconvolution methods can be used to recover cell type-specific information in the form of latent methylation components (LMCs) from such 'bulk' samples. Reference-free deconvolution methods retrieve these components without the need for DNA methylation profiles of purified cell types. Currently no integrated and guided procedure is available for data preparation and subsequent interpretation of deconvolution results. Here, we describe a three-stage protocol for reference-free deconvolution of DNA methylation data comprising: (i) data preprocessing, confounder adjustment using independent component analysis (ICA) and feature selection using DecompPipeline, (ii) deconvolution with multiple parameters using MeDeCom, RefFreeCellMix or EDec and (iii) guided biological inference and validation of deconvolution results with the R/Shiny graphical user interface FactorViz. Our protocol simplifies the analysis and guides the initial interpretation of DNA methylation data derived from complex samples. The harmonized approach is particularly useful to dissect and evaluate cell heterogeneity in complex systems such as tumors. We apply the protocol to lung cancer methylomes from The Cancer Genome Atlas (TCGA) and show that our approach identifies the proportions of stromal cells and tumor-infiltrating immune cells, as well as associations of the detected components with clinical parameters. The protocol takes slightly >3 d to complete and requires basic R skills.


Assuntos
Biologia Computacional/métodos , Epigenômica/métodos , Algoritmos , Simulação por Computador , Metilação de DNA/genética , Análise de Dados , Epigênese Genética , Humanos , Neoplasias/genética , Software
19.
J Mol Biol ; 432(22): 5902-5919, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32950480

RESUMO

Cytokines orchestrate responses to pathogens and in inflammatory processes, but they also play an important role in cancer by shaping the expression levels of cytokine response genes. Here, we conducted a large profiling study comparing miRNome and mRNA transcriptome data generated following different cytokine stimulations. Transcriptomic responses to STAT1- (IFNγ, IL-27) and STAT3-activating cytokines (IL6, OSM) were systematically compared in nine cancerous and non-neoplastic cell lines of different tissue origins (skin, liver and colon). The largest variation in our datasets was seen between cell lines of the three different tissues rather than stimuli. Notably, the variability in miRNome datasets was a lot more pronounced than in mRNA data. Our data also revealed that cells of skin, liver and colon tissues respond very differently to cytokines and that the cell signaling networks activated or silenced in response to STAT1- or STAT3-activating cytokines are specific to the tissue and the type of cytokine. However, globally, STAT1-activating cytokines had stronger effects than STAT3-inducing cytokines with most significant responses in liver cells, showing more genes upregulated and with higher fold change. A more detailed analysis of gene regulations upon cytokine stimulation in these cells provided insights into STAT1- versus STAT3-driven processes in hepatocarcinogenesis. Finally, independent component analysis revealed interconnected transcriptional networks distinct between cancer cells and their healthy counterparts.


Assuntos
Citocinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon gama/metabolismo , Interleucina-27/metabolismo , Interleucinas , MicroRNAs/metabolismo , Transdução de Sinais
20.
Autophagy ; 16(8): 1436-1452, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31775562

RESUMO

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enrichedpatient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. ABBREVIATIONS: ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CQ: chloroquine; CSC: cancer stem cells; CRC: colorectal cancer; HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PRKC/PKC: protein kinase C; SQSTM1/p62: sequestosome 1; TICs: tumor-initiating cells.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Hipóxia/complicações , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Autofagossomos/metabolismo , Autofagia , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/metabolismo , Autorrenovação Celular , Colo/patologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA