RESUMO
Targeting cardiomyocyte plasticity has emerged as a new strategy for promoting heart repair after myocardial infarction. However, the precise mechanistic network underlying heart regeneration is not completely understood. As noncoding RNAs, circular RNAs (circRNAs) play essential roles in regulating cardiac physiology and pathology. The present study aimed to investigate the potential roles of circMdc1 in cardiac repair after injury and elucidate its underlying mechanisms. Here, we identified that circMdc1 levels were upregulated in postnatal mouse hearts but downregulated in the regenerative myocardium. The expression of circMdc1 in cardiomyocytes is sensitive to oxidative stress, which was attenuated by N-acetyl-cysteine. Enforced circMdc1 expression inhibited cardiomyocyte proliferation, while circMdc1 silencing led to cardiomyocyte cell cycle re-entry. In vivo, the cardiac-specific adeno-associated virus-mediated knockdown of circMdc1 promoted cardiac regeneration and heart repair accompanied by improved heart function. Conversely, circMdc1 overexpression blunted the regenerative capacity of neonatal hearts after apex resection. Moreover, circMdc1 was able to block the translation of its host gene Mdc1 specifically by binding to PABP, affecting DNA damage and the chromosome stability of cardiomyocytes. Furthermore, overexpression of Mdc1 caused damaged mouse hearts to regenerate and repair after myocardial infarction in vivo. Oxidative stress-sensitive circMdc1 plays an important role in cardiac regeneration and heart repair after injury by regulating DNA damage and chromosome stability in cardiomyocytes by blocking the translation of the host gene Mdc1.
Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proliferação de Células , Instabilidade Cromossômica , Cisteína/metabolismo , Coração/fisiologia , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oxidantes/metabolismo , RNA Circular/genética , Regeneração/fisiologiaRESUMO
Heart failure (HF) is the common consequences of various cardiovascular diseases, often leading to severe cardiac output deficits with a high morbidity and mortality. In recent years, light emitting diodes-based therapy (LEDT) has been widely used in multiple cardiac diseases, while its modulatory effects on cardiac function with HF still remain unclear. Therefore, the objective of this study was to investigate the effects of LED-Red irradiation on cardiac function in mice with HF and to reveal its mechanisms. In this study, we constructed a mouse model of HF. We found that LED-Red (630 nm) was an effective wavelength for the treatment of HF. Meanwhile, the application of LED-Red therapy to treat HF mice improved cardiac function, ameliorate heart morphology, reduced pulmonary edema, as well as inhibited collagen deposition. Moreover, LED-Red therapy attenuated the extent of perivascular fibrosis. Besides, LED-Red irradiation promoted calcium transients in cardiomyocytes as well as upregulated ATP synthesis, which may have positive implications for contractile function in mice with HF. Collectively, we identified that LED-Red exerts beneficial effects on cardiac function in HF mice possibly by promoting the synthesis of ATP.