Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500187

RESUMO

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Med Chem ; 59(2): 592-608, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26727270

RESUMO

The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.


Assuntos
Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Bovinos , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Pentamidina/análogos & derivados , Pentamidina/química , Pentamidina/farmacologia , Conformação Proteica , Ratos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/efeitos dos fármacos
3.
Biochemistry ; 54(24): 3860-70, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26020841

RESUMO

Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Biotina/química , Carbono-Nitrogênio Ligases/química , Haemophilus influenzae/enzimologia , Modelos Moleculares , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Biocatálise , Biotina/análogos & derivados , Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Foscarnet/química , Foscarnet/metabolismo , Conformação Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
Biochemistry ; 53(42): 6628-40, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25268459

RESUMO

Elevated levels of the tumor marker S100B are observed in malignant melanoma, and this EF-hand-containing protein was shown to directly bind wild-type (wt) p53 in a Ca(2+)-dependent manner, dissociate the p53 tetramer, and inhibit its tumor suppression functions. Likewise, inhibiting S100B with small interfering RNA (siRNA(S100B)) is sufficient to restore wild-type p53 levels and its downstream gene products and induce the arrest of cell growth and UV-dependent apoptosis in malignant melanoma. Therefore, it is a goal to develop S100B inhibitors (SBiXs) that inhibit the S100B-p53 complex and restore active p53 in this deadly cancer. Using a structure-activity relationship by nuclear magnetic resonance approach (SAR by NMR), three persistent binding pockets are found on S100B, termed sites 1-3. While inhibitors that simultaneously bind sites 2 and 3 are in place, no molecules that simultaneously bind all three persistent sites are available. For this purpose, Cys84 was used in this study as a potential means to bridge sites 1 and 2 because it is located in a small crevice between these two deeper pockets on the protein. Using a fluorescence polarization competition assay, several Cys84-modified S100B complexes were identified and examined further. For five such SBiX-S100B complexes, crystallographic structures confirmed their covalent binding to Cys84 near site 2 and thus present straightforward chemical biology strategies for bridging sites 1 and 3. Importantly, one such compound, SC1982, showed an S100B-dependent death response in assays with WM115 malignant melanoma cells, so it will be particularly useful for the design of SBiX molecules with improved affinity and specificity.


Assuntos
Cálcio/química , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/química , Animais , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dissulfiram/química , Dissulfiram/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Humanos , Melanoma , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
5.
J Mol Biol ; 410(3): 447-60, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21616082

RESUMO

The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is further degraded to (S)-allantoin by two enzymes, HIU hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, are unstable in solution and decay nonstereospecifically to allantoin. In addition, nonenzymatic racemization of allantoin has been shown to occur at physiological pH. Since the further breakdown of allantoin is catalyzed by allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase is necessary for complete and efficient catabolism of uric acid. In this work, we characterize the structure and activity of allantoin racemase from Klebsiella pneumoniae (KpHpxA). In addition to an unliganded structure solved using selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These structures reveal several important features of the active site including an oxyanion hole and a polar binding pocket that interacts with the ureido tail of allantoin and serves to control the orientation of the hydantoin ring. The ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a k(cat)/K(m) of 6.0 × 10(5) M(-1) s(-1). Mutation of either of the active-site cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented provide new insights into the activity and substrate specificity of this enzyme and enable us to propose a mechanism for catalysis that is consistent with the two-base mechanism observed in other members of the aspartate/glutamate family.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/enzimologia , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Alantoína/química , Alantoína/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Cinética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Modelos Moleculares , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Racemases e Epimerases/genética , Serina/química , Serina/genética , Serina/metabolismo , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA