Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EFSA J ; 22(7): e8844, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957748

RESUMO

The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.

2.
EFSA J ; 22(7): e8859, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010865

RESUMO

The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 µg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.

3.
EFSA J ; 22(1): e8488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239496

RESUMO

The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 µg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.

4.
EFSA J ; 21(9): e08215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711880

RESUMO

Mineral oil hydrocarbons (MOH) are composed of saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH). Due to the complexity of the MOH composition, their complete chemical characterisation is not possible. MOSH accumulation is observed in various tissues, with species-specific differences. Formation of liver epithelioid lipogranulomas and inflammation, as well as increased liver and spleen weights, are observed in Fischer 344 (F344) rats, but not in Sprague-Dawley (SD) rats. These effects are related to specific accumulation of wax components in the liver of F344 rats, which is not observed in SD rats or humans. The CONTAM Panel concluded that F344 rats are not an appropriate model for effects of MOSH with wax components. A NOAEL of 236 mg/kg body weight (bw) per day, corresponding to the highest tested dose in F344 rats of a white mineral oil product virtually free of wax components, was selected as relevant reference point (RP). The highest dietary exposure to MOSH was estimated for the young population, with lower bound-upper bound (LB-UB) means and 95th percentiles of 0.085-0.126 and 0.157-0.212 mg/kg bw per day, respectively. Considering a margin of exposure approach, the Panel concluded that the present dietary exposure to MOSH does not raise concern for human health for all age classes. Genotoxicity and carcinogenicity are associated with MOAH with three or more aromatic rings. For this subfraction, a surrogate RP of 0.49 mg/kg bw per day, calculated from data on eight polycyclic aromatic hydrocarbons, was considered. The highest dietary exposure to MOAH was also in the young population, with LB-UB mean and 95th percentile estimations of 0.003-0.031 and 0.011-0.059 mg/kg bw per day, respectively. Based on two scenarios on three or more ring MOAH contents in the diet and lacking toxicological information on effects of 1 and 2 ring MOAH, a possible concern for human health was raised.

5.
EFSA J ; 21(3): e07884, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36999063

RESUMO

EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 µg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.

6.
EFSA J ; 20(10): e07433, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36320457

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of glyceryl polyethyleneglycol ricinoleate (PEG castor oil) as technological feed additive for all animal species. PEG castor oil is safe at a maximum concentration in complete feed of 90 mg/kg for chickens for fattening and other minor growing poultry; 134 mg/kg for laying hens and other laying/breeding birds kept for egg production/reproduction; 121 mg/kg for turkeys for fattening; 162 mg/kg for piglets and other minor growing Suidae; 194 mg/kg for pigs for fattening; 236 mg/kg for sows other minor reproductive Suidae; 231 mg/kg for dairy cows and other dairy ruminants (other than sheep/goats); 142 mg/kg in rabbits and 377 mg/kg in veal calves; 356 mg/kg for cattle for fattening and other growing ruminants, sheep, goat, horses and cats; 427 mg/kg for dogs; 407 mg/kg for salmonids and other fin fish; and 1,584 mg/kg for ornamental fish. For other growing species and non-food producing animals, the additive is considered safe at 90 mg/kg complete feed. The use of PEG castor oil as feed additive for all animal species would be of no concern for the consumer. The FEEDAP Panel considered inhalation exposure of the user to the additive unlikely. PEG castor oil is not considered a skin sensitiser. The panel was not in the position to conclude on the potential of the additive to be a skin or eye irritant. The additive is a readily biodegradable substance and is not expected to pose a risk for the environment. The lack of sufficient data does not allow the FEEDAP Panel to conclude on the efficacy of PEG castor oil as an emulsifier in feedingstuffs.

7.
EFSA J ; 20(9): e07524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177388

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed a decontamination process of fish oils and vegetable oils and fats to reduce the concentrations of dioxins (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, abbreviated together as PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) by adsorption to activated carbon. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed food business operator (FBO) were assessed for the efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and properties of the product. The limited information provided, in particular on the analysis of the samples before and after decontamination, did not allow the CONTAM Panel to conclude whether or not the proposed decontamination process is effective in reducing PCDD/Fs and DL-PCBs in the fish- and vegetable oils and fats. Although there is no evidence from the data provided that the decontamination process leads to detrimental changes in the nutritional composition of the fish- and vegetable oils, it is possible that the process could deplete some beneficial constituents (e.g. vitamins). Taken together, it was not possible for the CONTAM Panel to conclude that the decontamination process as proposed by the FBO is compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

8.
Toxins (Basel) ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35878168

RESUMO

Due to the climatic change, an increase in aflatoxin B1 (AFB1) maize contamination has been reported in Europe. As an alternative to mineral binders, natural phytogenic compounds are increasingly used to counteract the negative effects of AFB1 in farm animals. In cows, even low dietary AFB1 concentrations may result in the milk excretion of the genotoxic carcinogen metabolite aflatoxin M1 (AFM1). In this study, we tested the ability of dietary turmeric powder (TP), an extract from Curcuma longa (CL) rich in curcumin and curcuminoids, in reducing AFM1 mammary excretion in Holstein-Friesian cows. Both active principles are reported to inhibit AFM1 hepatic synthesis and interact with drug transporters involved in AFB1 absorption and excretion. A crossover design was applied to two groups of cows (n = 4 each) with a 4-day washout. Animals received a diet contaminated with low AFB1 levels (5 ± 1 µg/kg) for 10 days ± TP supplementation (20 g/head/day). TP treatment had no impact on milk yield, milk composition or somatic cell count. Despite a tendency toward a lower average AFM1 milk content in the last four days of the treatment (below EU limits), no statistically significant differences with the AFB1 group occurred. Since the bioavailability of TP active principles may be a major issue, further investigations with different CL preparations are warranted.


Assuntos
Aflatoxina M1 , Leite , Aflatoxina B1/metabolismo , Aflatoxina M1/análise , Aflatoxinas , Ração Animal/análise , Animais , Bovinos , Curcuma/metabolismo , Feminino , Contaminação de Alimentos/análise , Lactação , Leite/química , Pós/metabolismo
9.
Front Vet Sci ; 8: 822227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141309

RESUMO

Aflatoxin B1 (AFB1) causes hepatotoxicity, immunotoxicity, and kidney damage, and it is included in group I of human carcinogens. The European Commission has established maximum limits of AFB1 in feed, ranging from 5 to 20 µg/kg. Chicken is moderately sensitive to AFB1, which results in reduced growth performance and economic losses. Oxidative stress triggered by AFB1 plays a crucial role in kidney damage and the antioxidant activity of Curcumin (CURC) could help in preventing such adverse effect. Twenty-days-old broilers were treated for 10 days with AFB1 (0.02 mg/kg feed), alone or in combination with CURC (400 mg/kg feed), to explore the effects on the renal tissue. Animals exposed to AFB1 alone displayed alterations of the oxidative stress parameters compared with controls: serum antioxidant capacity, and enzymatic activity of kidney superoxide dismutase, catalase and glutathione peroxidase were decreased, while renal malondialdehyde levels and NADPH oxidase complex expression were increased. The administration of CURC attenuates all the oxidative stress parameters modified by AFB1 in the chicken kidney, opening new perspectives in the management of aflatoxicosis.

10.
EFSA J ; 18(11): e06268, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33193868

RESUMO

The European Commission asked EFSA to update its previous Opinion on nickel in food and drinking water, taking into account new occurrence data, the updated benchmark dose (BMD) Guidance and newly available scientific information. More than 47,000 analytical results on the occurrence of nickel were used for calculating chronic and acute dietary exposure. An increased incidence of post-implantation loss in rats was identified as the critical effect for the risk characterisation of chronic oral exposure and a BMDL 10 of 1.3 mg Ni/kg body weight (bw) per day was selected as the reference point for the establishment of a tolerable daily intake (TDI) of 13 µg/kg bw. Eczematous flare-up reactions in the skin elicited in nickel-sensitised humans, a condition known as systemic contact dermatitis, was identified as the critical effect for the risk characterisation of acute oral exposure. A BMDL could not be derived, and therefore, the lowest-observed-adverse-effect-level of 4.3 µg Ni/kg bw was selected as the reference point. The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel-sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.

11.
EFSA J ; 18(3): e06040, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32874256

RESUMO

EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 µg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.

12.
EFSA J ; 18(4): e06069, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32874281

RESUMO

Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of propyl gallate as feed additive for all animal species. Propyl gallate is neither genotoxic nor carcinogenic. Propyl gallate a is safe for veal calves, cattle for fattening, dairy cows, sheep, goats, sows, horses and salmonids at the proposed maximum use level of 40 mg/kg and for ornamental fish at the proposed maximum use level of 100 mg/kg. The following concentrations (mg/kg complete feed) are considered safe for the other target species: 15 for chickens for fattening; 20 for turkeys for fattening, laying hens and rabbits; 27 for piglets and pigs for fattening and 71 for dogs. The Panel cannot conclude on a safe level for cats. The exposure of the consumer to propyl gallate and its metabolites cannot be estimated owing to the absence of reliable data on residues of propyl gallate and its metabolites in edible tissues and products. Therefore, the FEEDAP Panel is not in the position to conclude on the safety for the consumer of propyl gallate, when used as a feed additive for all food-producing animal species. Propyl gallate is irritant to skin and eyes and a dermal sensitiser. Exposure via inhalation is possible and it is considered a hazard. The use of the additive in animal nutrition does not pose a risk for the environment. The FEEDAP Panel concludes that propyl gallate has the potential to act as an antioxidant in feedingstuffs. The Panel did not see a reason for the use of propyl gallate as an antioxidant in water for drinking.

13.
EFSA J ; 18(4): e06076, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32874287

RESUMO

Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety of ammonium formate for all animal species. In 2015, the FEEDAP Panel delivered an opinion on the safety and efficacy of ammonium formate, calcium formate and sodium formate. In that opinion, the Panel considered the unavoidable presence of formamide, as a contaminant of ammonium formate, of concern for developmental toxicity for reproduction animals and for carcinogenicity for non-food-producing animals. Regarding the safety for the consumer, the Panel concluded that: the use of the additive in dairy animals and laying poultry may raise concerns due to the potential exposure of consumers to formamide. In the current submission, the applicant proposed to reduce the maximum content of ammonium formate in feed to 2,000 mg formic acid equivalent/kg feed from the previously proposed 12,000 mg/kg for pigs and 10,000 mg/kg for all other animal species. Based on the calculation of the maximum safe concentration of formamide in feed, the FEEDAP Panel cannot conclude on the safety of ammonium formate in complete feed for laying hens and sows, since the calculate maximum concentration of formamide in feed (11.5 mg formamide/kg) exceed the maximum safe concentration in feed for these species (5.6 mg formamide/kg for laying hens and 9.9 mg formamide/kg for sows). Based on the results of a residue study in eggs, the use of ammonium formate in animal nutrition at a maximum content of 2,000 mg formic acid equivalent/kg complete feed would not result in concerns on the safety for the consumer.

14.
EFSA J ; 18(5): e06113, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-37649524

RESUMO

The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 µg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 µg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.

15.
Toxicol In Vitro ; 57: 174-183, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30849473

RESUMO

Aflatoxin (AF) B1, a widespread food and feed contaminant, is bioactivated by drug metabolizing enzymes (DME) to cytotoxic and carcinogenic metabolites like AFB1-epoxide and AFM1, a dairy milk contaminant. A number of natural antioxidants have been reported to afford a certain degree of protection against AFB1 (cyto)toxicity. As the mammary gland potentially participates in the generation of AFB1 metabolites, we evaluated the role of selected natural antioxidants (i.e. curcumin, quercetin and resveratrol) in the modulation of AFB1 toxicity and metabolism using a bovine mammary epithelial cell line (BME-UV1). Quercetin and, to a lesser extent, resveratrol and curcumin from Curcuma longa (all at 5 µM) significantly counteracted the AFB1-mediated impairment of cell viability (concentration range: 96-750 nM). Moreover, quercetin was able to significantly reduce the synthesis of AFM1. The quantitative PCR analysis on genes encoding for DME (phase I and II) and antioxidant enzymes showed that AFB1 caused an overall downregulation of the detoxifying systems, and mainly of GSTA1, which mediates the GSH conjugation of the AFB1-epoxide. The negative modulation of GSTA1 was efficiently reversed in the presence of quercetin, which significantly increased GSH levels as well. It is suggested that quercetin exerts its beneficial effects by depressing the bio-transformation of AFB1 and counterbalancing its pro-oxidant effects.


Assuntos
Aflatoxina B1/toxicidade , Aflatoxina M1/metabolismo , Antioxidantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Curcumina/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Células Epiteliais/metabolismo , Epóxido Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/citologia , Quercetina/farmacologia , Resveratrol/farmacologia , Transferases/genética
16.
EFSA J ; 16(2): e05173, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625808

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process for fish meal. This process entails solvent (hexane) extraction of fish oil from fish meal to remove dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)) as well as dioxin-like (DL-) and non-dioxin-like (NDL-) polychlorinated biphenyls (PCBs) followed by replacement with decontaminated fish oil. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. The data provided by the feed business operator were assessed with respect to the efficacy of the process, absence of solvent residues, and on information demonstrating that the process does not adversely affect the nature and characteristics of the product. According to data provided, the process was effective in removing PCDD/Fs and DL-PCBs by approximately 70% and NDL-PCBs by about 60%. The data showed that it is possible to meet the current EU requirements with respect to these contaminants, provided that the level of contamination of untreated fish meal is within the range of the tested batches. It is unlikely that hazardous substances (i.e. hexane) remain in the final product. The Panel considered that there is no evidence that fish oil extraction followed by replacement with decontaminated fish oil leads to detrimental changes in the nutritional composition of the fish meal, although some beneficial constituents (e.g. lipophilic vitamins) might be depleted. The feed business operator submitted information to demonstrate safe disposal of the waste material. The CONTAM Panel concluded that the proposed decontamination process to remove dioxins (PCDD/Fs) and PCBs from fish meal by means of solvent extraction and fish oil replacement was assessed to be compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

17.
EFSA J ; 16(2): e05174, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625809

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process of fish meal. It consisted of extraction of the fish oil, filtration and adsorption with activated carbon, and replacement with decontaminated fish oil in order to reduce the amount of dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)), and dioxin-like (DL-) and non-dioxin-like (NDL-) polychlorinated biphenyls (PCBs). All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed business operator were assessed for efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and the nature of the product. The process was effective in removing PCDD/Fs (97%) and DL- and NDL-PCBs (93%). The fish meal produced complied with EU regulations for these contaminants. The Panel considered that the reference to information available in published literature was a pragmatic approach to demonstrate that the replacement of fish oil and the use of activated carbon to adsorb these contaminants does not lead to any detrimental changes in the nature of the fish meal. However, it was noted that the process could deplete some beneficial constituents (e.g. oil-soluble vitamins). Information was provided to demonstrate the safe disposal of the waste material. The CONTAM Panel concluded that on the basis of the information submitted by the feed business operator the proposed decontamination process to remove dioxins (PCDD/Fs) and PCBs from the fish meal by oil extraction followed by replacement with decontaminated fish oil, was compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

18.
EFSA J ; 16(2): e05175, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625810

RESUMO

EFSA was asked to deliver a scientific opinion regarding the effect on public health of a possible increase of the maximum level (ML) for 'aflatoxin total' (AFT; sum of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2) from 4 to 10 µg/kg in peanuts and processed products thereof. Aflatoxins are genotoxic and cause hepatocellular carcinomas in humans. The Panel on Contaminants in the Food Chain (CONTAM Panel) evaluated 8,085 samples of peanuts and 472 samples of peanut butter, with > 60% left-censored. The mean concentration of AFT in peanuts was 2.65/3.56 µg/kg (lower bound (LB)/upper bound (UB)) with a maximum of 1,429 µg/kg. The mean concentration in peanut butter was 1.47/1.92 µg/kg (LB/UB) with a maximum of 407 µg/kg. Peanut oil was not included since all data were left-censored and the ML does not apply for oil. Exposure was calculated for a 'Current ML' and 'Increased ML' scenario, and mean chronic exposure estimates for consumers only, amounted to 0.04-2.74 ng/kg body weight (bw) per day and 0.07-4.28 ng/kg bw per day, respectively. The highest exposures were calculated for adolescents and other children. The CONTAM Panel used the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives for the risk characterisation. Under the scenario of the current ML, the cancer risk was estimated to range between 0.001 and 0.213 aflatoxin-induced cancers per 100,000 person years. Under the scenario of the increased ML, it ranged between 0.001 and 0.333 aflatoxin-induced cancers per 100,000 person years. Comparing these data calculated under the current ML scenario with the yearly excess cancer risk of 0.014 shows a higher risk for consumers of peanuts and peanut butter in some surveys. The calculated cancer risks indicate that an increase of the ML would further increase the risk by a factor of 1.6-1.8.

19.
EFSA J ; 16(3): e05082, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32625822

RESUMO

Moniliformin (MON) is a mycotoxin with low molecular weight primarily produced by Fusarium fungi and occurring predominantly in cereal grains. Following a request of the European Commission, the CONTAM Panel assessed the risk of MON to human and animal health related to its presence in food and feed. The limited information available on toxicity and on toxicokinetics in experimental and farm animals indicated haematotoxicity and cardiotoxicity as major adverse health effects of MON. MON causes chromosome aberrations in vitro but no in vivo genotoxicity data and no carcinogenicity data were identified. Due to the limitations in the available toxicity data, human acute or chronic health-based guidance values (HBGV) could not be established. The margin of exposure (MOE) between the no-observed-adverse-effect level (NOAEL) of 6.0 mg/kg body weight (bw) for cardiotoxicity from a subacute study in rats and the acute upper bound (UB) dietary exposure estimates ranged between 4,000 and 73,000. The MOE between the lowest benchmark dose lower confidence limit (for a 5% response - BMDL05) of 0.20 mg MON/kg bw per day for haematological hazards from a 28-day study in pigs and the chronic dietary human exposure estimates ranged between 370 and 5,000,000 for chronic dietary exposures. These MOEs indicate a low risk for human health but were associated with high uncertainty. The toxicity data available for poultry, pigs, and mink indicated a low or even negligible risk for these animals from exposure to MON in feed at the estimated exposure levels under current feeding practices. Assuming similar or lower sensitivity as for pigs, the CONTAM Panel considered a low or even negligible risk for the other animal species for which no toxicity data suitable for hazard characterisation were identified. Additional toxicity studies are needed and depending on their outcome, the collection of more occurrence data on MON in food and feed is recommended to enable a comprehensive human risk assessment.

20.
EFSA J ; 16(3): e05205, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32625839

RESUMO

The additive is a natural mixture of talc and chlorite (NTMC) that contains at least 75% of talc and chlorite as main components. The additive is intended for use as a technological additive (functional groups: (i) anticaking agents) in premixtures and feedingstuffs for all animal species at use levels of 1,000-50,000 mg/kg. No safe dietary level of NMTC could be identified for piglets, chickens for fattening and dairy cows. The use of NMTC in animal nutrition is considered not to pose a risk for the consumer of animal tissues and products from animals fed the additive. Talc could cause serious lung disease if repeatedly inhaled in large quantities over a long period. Talc is not irritant to skin and eyes. In the absence of data, no conclusion can be drawn on the skin sensitisation potential of the product. The components of the additive (talc, chlorite, dolomite and magnesite) are ubiquitous in the environment, being natural components of soil. Therefore, it is not expected that its use as a feed additive would adversely affect the environment. The additive NMTC is efficacious as an anticaking agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA