Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 153(2): 566-578.e5, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28456632

RESUMO

BACKGROUND & AIMS: Tumor necrosis factor (TNF) is an inflammatory cytokine expressed by human fetal liver cells (HFLCs) after infection with cell culture-derived hepatitis C virus (HCV). TNF has been reported to increase entry of HCV pseudoparticles into hepatoma cells and inhibit signaling by interferon alpha (IFNα), but have no effect on HCV-RNA replication. We investigated the effects of TNF on HCV infection of and spread among Huh-7 hepatoma cells and primary HFLCs. METHODS: Human hepatoma (Huh-7 and Huh-7.5) and primary HFLCs were incubated with TNF and/or recombinant IFNA2A, IFNB, IFNL1, and IFNL2 before or during HCV infection. We used 2 fully infectious HCV chimeric viruses of genotype 2A in these studies: J6/JFH (clone 2) and Jc1(p7-nsGluc2A) (Jc1G), which encodes a secreted luciferase reporter. We measured HCV replication, entry, spread, production, and release in hepatoma cells and HFLCs. RESULTS: TNF inhibited completion of the HCV infectious cycle in hepatoma cells and HFLCs in a dose-dependent and time-dependent manner. This inhibition required TNF binding to its receptor. Inhibition was independent of IFNα, IFNß, IFNL1, IFNL2, or Janus kinase signaling via signal transducer and activator of transcription. TNF reduced production of infectious viral particles by Huh-7 and HFLC, and thereby reduced the number of infected cells and focus size. TNF had little effect on HCV replicons and increased entry of HCV pseudoparticles. When cells were incubated with TNF before infection, the subsequent antiviral effects of IFNs were increased. CONCLUSIONS: In a cell culture system, we found TNF to have antiviral effects independently of, as well as in combination with, IFNs. TNF inhibits HCV infection despite increased HCV envelope glycoprotein-mediated infection of liver cells. These findings contradict those from other studies, which have reported that TNF blocks signal transduction in response to IFNs. The destructive inflammatory effects of TNF must be considered along with its antiviral effects.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Interferons/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Genótipo , Hepacivirus/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Janus Quinases/metabolismo , Fígado/citologia , Neoplasias Hepáticas/virologia , Receptores do Fator de Necrose Tumoral/metabolismo , Replicon/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Nucleic Acids Res ; 41(2): 943-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222131

RESUMO

Trypanosoma brucei survives in mammals through antigenic variation, which is driven by RAD51-directed homologous recombination of Variant Surface Glycoproteins (VSG) genes, most of which reside in a subtelomeric repository of >1000 silent genes. A key regulator of RAD51 is BRCA2, which in T. brucei contains a dramatic expansion of a motif that mediates interaction with RAD51, termed the BRC repeats. BRCA2 mutants were made in both tsetse fly-derived and mammal-derived T. brucei, and we show that BRCA2 loss has less impact on the health of the former. In addition, we find that genome instability, a hallmark of BRCA2 loss in other organisms, is only seen in mammal-derived T. brucei. By generating cells expressing BRCA2 variants with altered BRC repeat numbers, we show that the BRC repeat expansion is crucial for RAD51 subnuclear dynamics after DNA damage. Finally, we document surprisingly limited co-localization of BRCA2 and RAD51 in the T. brucei nucleus, and we show that BRCA2 mutants display aberrant cell division, revealing a function distinct from BRC-mediated RAD51 interaction. We propose that BRCA2 acts to maintain the huge VSG repository of T. brucei, and this function has necessitated the evolution of extensive RAD51 interaction via the BRC repeats, allowing re-localization of the recombinase to general genome damage when needed.


Assuntos
Proteína BRCA2/genética , Instabilidade Genômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Rad51 Recombinase/metabolismo , Trypanosoma brucei brucei/genética , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Divisão Celular , Dano ao DNA , Reparo do DNA , Mutação , Fenótipo , Recombinação Genética , Sequências Repetitivas de Aminoácidos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
3.
Pflugers Arch ; 453(4): 421-32, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17021798

RESUMO

Cell migration is a process that plays an important role throughout the entire life span. It starts early on during embryogenesis and contributes to shaping our body. Migrating cells are involved in maintaining the integrity of our body, for instance, by defending it against invading pathogens. On the other side, migration of tumor cells may have lethal consequences when tumors spread metastatically. Thus, there is a strong interest in unraveling the cellular mechanisms underlying cell migration. The purpose of this review is to illustrate the functional importance of ion and water channels as part of the cellular migration machinery. Ion and water flow is required for optimal migration, and the inhibition or genetic ablation of channels leads to a marked impairment of migration. We briefly touch cytoskeletal mechanisms of migration as well as cell-matrix interactions. We then present some general principles by which channels can affect cell migration before we discuss each channel group separately.


Assuntos
Movimento Celular/fisiologia , Canais Iônicos/fisiologia , Água/metabolismo , Animais , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Humanos , Canais Iônicos/metabolismo , Modelos Biológicos , Água/fisiologia
4.
J Cell Physiol ; 206(1): 86-94, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15965951

RESUMO

Cell migration is crucial for wound healing, immune defense, or formation of tumor metastases. In addition to the cytoskeleton, Ca2+ sensitive K+ channels (IK1) are also part of the cellular "migration machinery." We showed that Ca2+ sensitive K+ channels support the retraction of the rear part of migrating MDCK-F cells by inducing a localized shrinkage at this cell pole. So far the molecular nature and in particular the subcellular distribution of these channels in MDCK-F cells is unknown. We compared the effect of IK1 channel blockers and activators on the current of a cloned IK1 channel from MDCK-F cells (cIK1) and the migratory behavior of these cells. Using IK1 channels labeled with a HA-tag or the enhanced green fluorescent protein we studied the subcellular distribution of the canine (cIK1) and the human (hIK1) channel protein in different migrating cells. The functional impact of cIK1 channel activity at the front or rear part of MDCK-F cells was assessed with a local superfusion technique and a detailed morphometric analysis. We show that it is cIK1 whose activity is required for migration of MDCK-F cells. IK1 channels are found in the entire plasma membrane, but they are concentrated at the cell front. This is in part due to membrane ruffling at this cell pole. However, there appears to be only little cIK1 channel activity at the front of MDCK-F cells. In our view this apparent discrepancy can be explained by differential regulation of IK1 channels at the front and rear part of migrating cells.


Assuntos
Movimento Celular/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Forma Celular , Cães , Humanos , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA