Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 22, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317082

RESUMO

BACKGROUND: The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1 muscarinic acetylcholine (ACh) receptor (M1AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. METHODS: In male C57Bl/6 mice, we quantified basal forebrain cholinergic activity (immunostaining), hippocampal neuronal activity, serum cytokine/chemokine levels (ELISA) and splenic cell subtypes (flow cytometry) at baseline, following CLP and following CLP in mice also treated with the M1AChR agonist xanomeline. RESULTS: At 48 h. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1ß, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFα+ and ILß+ neutrophils and ILß+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1ß, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomeline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. Percentages of IL-1ß+ neutrophils, IL-1ß+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline-treated and untreated post-CLP mice. CONCLUSION: Our findings indicate that M1AChR-mediated responses modulate CLP-induced alterations in serum levels of some, but not all, cytokines/chemokines and affected splenic immune response phenotypes.


Assuntos
Citocinas , Piridinas , Sepse , Tiadiazóis , Masculino , Camundongos , Animais , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL3 , Quimiocinas , Punções , Endotoxinas , Encéfalo/metabolismo , Ligadura , Colinérgicos , Fator Estimulador de Colônias de Granulócitos , Camundongos Endogâmicos C57BL , Ceco/metabolismo , Modelos Animais de Doenças
2.
PLoS One ; 9(6): e98861, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24897117

RESUMO

The Wnt signaling pathway is often chronically activated in diverse human tumors, and the Frizzled (FZD) family of receptors for Wnt ligands, are central to propagating oncogenic signals in a ß-catenin-dependent and independent manner. SIRT1 is a class III histone deacetylase (HDAC) that deacetylates histone and non-histone proteins to regulate gene transcription and protein function. We previously demonstrated that SIRT1 loss of function led to a significant decrease in the levels of Dishevelled (Dvl) proteins. To further explore this connection between the sirtuins and components of the Wnt pathway, we analyzed sirtuin-mediated regulation of FZD proteins. Here we explore the contribution of sirtuin deacetylases in promoting constitutive Wnt pathway activation in breast cancer cells. We demonstrate that the use of small molecule inhibitors of SIRT1 and SIRT2, and siRNA specific to SIRT1, all reduce the levels of FZD7 mRNA. We further demonstrate that pharmacologic inhibition of SIRT1/2 causes a marked reduction in FZD7 protein levels. Additionally, we show that ß-catenin and c-Jun occupy the 7 kb region upstream of the transcription start site of the FZD7 gene, and SIRT1 inhibition leads to a reduction in the occupancy of both ß-catenin and c-Jun at points along this region. This work uncovers a new mechanism for the regulation of FZD7 and provides a critical new link between the sirtuins and FZD7, one of the earliest nodal points from which oncogenic Wnt signaling emanates. This study shows that inhibition of specific sirtuins may provide a unique strategy for inhibiting the constitutively active Wnt pathway at the level of the receptor.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores Frizzled/genética , Regulação Neoplásica da Expressão Gênica , Sirtuína 1/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Naftalenos/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Pirimidinonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , beta Catenina/genética
3.
Mol Endocrinol ; 27(3): 480-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340254

RESUMO

Breast cancer remains one of the leading causes of death in women diagnosed with cancer. In breast cancer, aberrant expression of the CYP19A1 gene, which encodes the aromatase enzyme, contributes to increased intratumoral levels of estradiol. Regardless of whether this estrogen is produced by peripheral tissues or within specific subpopulations of cells within the breast tumor, it is clear that the aromatase enzymatic activity is critical for the growth of estrogen-dependent tumors. Currently, aromatase inhibitors have proven to be highly effective in blocking the growth of estrogen-dependent forms of breast cancer. CYP19A1 transcription is tightly controlled by 10 tissue-specific promoters. In breast cancer, however, aromatase transcription is driven by multiple promoters that somehow override the tissue-specific regulation of normal tissue. Here, we explore the role that the deacetylase, sirtuin-1 (SIRT1), plays in positively regulating aromatase in breast cancer. We demonstrate that the use of cambinol and the SIRT1/2 inhibitor VII, 2 small molecule inhibitors of SIRT1 and SIRT2, as well as small molecule inhibitors and small interfering RNA specific to SIRT1, all reduce the levels of aromatase mRNA. We further demonstrate that pharmacologic inhibition causes a marked reduction in aromatase protein levels. Additionally, by chromatin immunoprecipitation, we demonstrate that SIRT1 occupies the promoter regions PI.3/PII and PI.4, and its inhibition leads to increased acetylation of estrogen-related receptorα, a transcription factor that positively regulates CYP19A1 transcription in epithelial cells. Finally, we demonstrate by immunohistochemistry that SIRT1 is significantly up-regulated in invasive ductal carcinoma relative to normal tissue adjacent to tumor, further suggesting a role of SIRT1 in breast cancer. This work uncovers a new mechanism for the regulation of aromatase and provides rationale for further investigation of how the inhibition of specific sirtuins may provide a unique strategy for inhibiting aromatase that may complement or synergize with existing therapies.


Assuntos
Aromatase/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sirtuína 1/metabolismo , Aromatase/metabolismo , Carcinoma Ductal de Mama/enzimologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Invasividade Neoplásica , Regiões Promotoras Genéticas , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo
4.
Breast Cancer Res Treat ; 108(1): 43-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17508279

RESUMO

BACKGROUND: In view of the limited success of available treatment modalities for a wide array of cancer, alternative and complementary therapeutic strategies need to be developed. Virotherapy employing conditionally replicative adenoviruses (CRAds) represents a promising targeted intervention relevant to a wide array of neoplastic diseases. Critical to the realization of an acceptable therapeutic index using virotherapy in clinical trials is the achievement of oncolytic replication in tumor cells, while avoiding non-specific replication in normal tissues. In this report, we exploited cancer-specific control of mRNA translation initiation in order to achieve enhanced replicative specificity of CRAd virotherapy agents. Heretofore, the achievement of replicative specificity of CRAd agents has been accomplished either by viral genome deletions or incorporation of tumor selective promoters. In contrast, control of mRNA translation has not been exploited for the design of tumor specific replicating viruses to date. We show herein, the utility of a novel approach that combines both transcriptional and translational regulation strategies for the key goal of replicative specificity. METHODS: We describe the construction of a CRAd with cancer specific gene transcriptional control using the CXCR4 gene promoter (TSP) and cancer specific mRNA translational control using a 5'-untranslated region (5'-UTR) element from the FGF-2 (Fibroblast Growth Factor-2) mRNA. RESULTS: Both in vitro and in vivo studies demonstrated that our CRAd agent retains anti-tumor potency. Importantly, assessment of replicative specificity using stringent tumor and non-tumor tissue slice systems demonstrated significant improvement in tumor selectivity. CONCLUSIONS: Our study addresses a conceptually new paradigm: dual targeting of transgene expression to cancer cells using both transcriptional and mRNA translational control. Our novel approach addresses the key issue of replicative specificity and can potentially be generalized to a wide array of tumor types, whereby tumor selective patterns of gene expression and mRNA translational control can be exploited.


Assuntos
Adenoviridae/genética , Neoplasias da Mama/terapia , Terapia Viral Oncolítica/métodos , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Proteínas E1A de Adenovirus/genética , Animais , Western Blotting , Proteína p300 Associada a E1A/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Vetores Genéticos , Humanos , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , Receptores CXCR4/genética , Replicação Viral
5.
Pancreas ; 28(4): e90-5, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15097869

RESUMO

Cancer chemotherapeutic strategies should be devised to provide higher tumor response and lower toxicity for combination chemotherapy. Genistein has been shown to inhibit the growth of various cancer cells in vitro and in vivo without toxicity to normal cells. The antitumor effects of genistein could be in part due to inactivation of NF-kappaB activity. In contrast, chemotherapeutic agents inadvertently induce NF-kappaB activity, which may lead to chemoresistance. In this study, we investigated whether the inactivation of NF-kappaB by genistein would enhance the efficacy of chemotherapeutic agents. BxPC-3 pancreatic cancer cells were pretreated with 30 micromol/L genistein for 24 hours and then exposed to lower concentrations of chemotherapeutic agents for an additional 24 hours. Cell growth inhibition assay, apoptosis assay, and NF-kappaB EMSA were performed. The combination of 30 micromol/L genistein with 1 nmol/L docetaxel or 100 nmol/L cisplatin elicited significantly greater inhibition of cell growth compared with either agent alone. The combination treatment induced more apoptosis in BxPC-3 cells compared with single agents. Moreover, the NF-kappaB activity was significantly increased within 2 hours of docetaxel or cisplatin treatment, and the NF-kappaB-inducing activity of these agents was completely abrogated in cells pretreated with genistein. These results clearly suggest that genistein pretreatment, which inactivates NF-kappaB activity, together with other cellular effects of genistein, may contribute to increased cell growth inhibition and apoptosis inducing effects of nontoxic doses of docetaxel and cisplatin, which could be a novel strategy for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos/uso terapêutico , Genisteína/uso terapêutico , NF-kappa B/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Docetaxel , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Taxoides/uso terapêutico
6.
Oncogene ; 22(30): 4702-9, 2003 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-12879015

RESUMO

Genistein, a natural isoflavonoid found in soybean products, has been proposed to be associated with a lower rate of breast cancer in Asian women. Studies from our laboratory and others have shown that genistein can induce apoptosis by regulating the expression of apoptosis-related genes in breast cancer cells. However, the precise molecular mechanism(s) by which genistein induces apoptotic cell death is not clear. In order to investigate such mechanism, we tested the role of Akt and NF-kappaB in genistein-treated MDA-MB-231 breast cancer cells. We found that inhibition of cell growth and induction of apoptosis by genistein are partly mediated through the downregulation of Akt and NF-kappaB pathways. Gel shift assay showed that NF-kappaB DNA-binding activity in MDA-MB-231 cells transfected with Akt cDNA was induced, suggesting that there is a cross-talk between NF-kappaB and Akt signaling pathway. Moreover, we found that genistein could abrogate EGF and Akt induced NF-kappaB activation. From these results, we conclude that the inactivation of NF-kappaB by genistein in MDA-MB-231 breast cancer cells is partly mediated via Akt pathway, which could be useful for rational design of strategies for the prevention and/or treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Genisteína/farmacologia , NF-kappa B/antagonistas & inibidores , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/tratamento farmacológico , DNA Complementar/metabolismo , Densitometria , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Genes Reporter , Humanos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA