Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 226(4): 585-594, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35413121

RESUMO

The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing titers comparable to those elicited by RhCMV infection. Similarly, immunization with all 3 immunogens elicited pp65-specific cytotoxic T-cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and was detected in saliva, blood, and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Citomegalovirus , Humanos , Macaca mulatta , Proteínas do Envelope Viral
2.
Hum Mol Genet ; 24(21): 6013-28, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251043

RESUMO

Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD.


Assuntos
Adenosina Trifosfatases/metabolismo , Lisossomos/enzimologia , Proteínas de Membrana/metabolismo , Mutação , Doença de Parkinson/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Astrócitos/enzimologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , ATPases Translocadoras de Prótons , Regulação para Cima
3.
J Biol Chem ; 290(32): 19433-44, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26078453

RESUMO

Therapeutic approaches to slow or block the progression of Parkinson disease (PD) do not exist. Genetic and biochemical studies implicate α-synuclein and leucine-rich repeat kinase 2 (LRRK2) in late-onset PD. LRRK2 kinase activity has been linked to neurodegenerative pathways. However, the therapeutic potential of LRRK2 kinase inhibitors is not clear because significant toxicities have been associated with one class of LRRK2 kinase inhibitors. Furthermore, LRRK2 kinase inhibitors have not been tested previously for efficacy in models of α-synuclein-induced neurodegeneration. To better understand the therapeutic potential of LRRK2 kinase inhibition in PD, we evaluated the tolerability and efficacy of a LRRK2 kinase inhibitor, PF-06447475, in preventing α-synuclein-induced neurodegeneration in rats. Both wild-type rats as well as transgenic G2019S-LRRK2 rats were injected intracranially with adeno-associated viral vectors expressing human α-synuclein in the substantia nigra. Rats were treated with PF-06447475 or a control compound for 4 weeks post-viral transduction. We found that rats expressing G2019S-LRRK2 have exacerbated dopaminergic neurodegeneration and inflammation in response to the overexpression of α-synuclein. Both neurodegeneration and neuroinflammation associated with G2019S-LRRK2 expression were mitigated by LRRK2 kinase inhibition. Furthermore, PF-06447475 provided neuroprotection in wild-type rats. We could not detect adverse pathological indications in the lung, kidney, or liver of rats treated with PF-06447475. These results demonstrate that pharmacological inhibition of LRRK2 is well tolerated for a 4-week period of time in rats and can counteract dopaminergic neurodegeneration caused by acute α-synuclein overexpression.


Assuntos
Antiparkinsonianos/farmacologia , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , alfa-Sinucleína/genética , Animais , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Humanos , Injeções Intraventriculares , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
4.
J Neurochem ; 128(4): 561-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117733

RESUMO

Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.


Assuntos
Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , Adenoviridae/genética , Animais , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CXCL10/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Camundongos , Camundongos Knockout , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Fosforilação , Plasmídeos/genética , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Titânio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Biol Reprod ; 77(1): 147-55, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17392500

RESUMO

Comprehensive understanding of the cellular mechanisms utilized by luteal cells in response to extracellular hormonal signals resulting in the normal synthesis and secretion of their steroid and peptide products has yet to be achieved. Previous studies have established that cAMP functions as a second messenger in mediating gonadotropin stimulated luteal progesterone secretion. Classically, increased intracellular concentrations of cAMP result in activation of protein kinase A (PKA), which in turn phosphorylates gene regulatory transcription factors. Recent studies demonstrate that non-PKA mediated actions of cAMP exist, yet the mechanisms are not well understood. In addition to gonadotropic hormones, such growth factors as insulin, insulin-like growth factor 1, and epidermal growth factor have been shown to modulate luteal steroid hormone synthesis and steroidogenic enzyme expression as either independent effects or via amplification or modulation of the action of gonadotropic hormones or cAMP. Thus, mechanisms independent of cAMP and also downstream to cAMP that do not involve PKA are likely to be important in steroidogenesis in mammalian cells. The present studies were performed to help define the cellular mediators involved in cAMP-stimulated progesterone expression. Our data demonstrate that, in an in vitro steroidogenic cell model, 1) cAMP-stimulated progesterone occurs in a manner that is independent of PKA, 2) neither phosphatidylinositol-3-kinase nor mitogen-activated protein kinase are involved in PKA-independent cAMP-stimulated progesterone production, 3) tyrosine kinase activity does mediate cAMP-stimulated progesterone production, and 4) cAMP directly activates the Ras protein. These data suggest novel mediators of cAMP-stimulated progesterone production.


Assuntos
Corpo Lúteo/citologia , Corpo Lúteo/metabolismo , AMP Cíclico/metabolismo , Progesterona/metabolismo , Proteínas Tirosina Quinases/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Progesterona/biossíntese , Progesterona/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA