Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 59, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229174

RESUMO

BACKGROUND: Loss-of-function mutations in the PRKN gene, encoding Parkin, are the most common cause of autosomal recessive Parkinson's disease (PD). We have previously identified mitoch ondrial Stomatin-like protein 2 (SLP-2), which functions in the assembly of respiratory chain proteins, as a Parkin-binding protein. Selective knockdown of either Parkin or SLP-2 led to reduced mitochondrial and neuronal function in neuronal cells and Drosophila, where a double knockdown led to a further worsening of Parkin-deficiency phenotypes. Here, we investigated the minimal Parkin region involved in the Parkin-SLP-2 interaction and explored the ability of Parkin-fragments and peptides from this minimal region to restore mitochondrial function. METHODS: In fibroblasts, human induced pluripotent stem cell (hiPSC)-derived neurons, and neuroblastoma cells the interaction between Parkin and SLP-2 was investigated, and the Parkin domain responsible for the binding to SLP-2 was mapped. High resolution respirometry, immunofluorescence analysis and live imaging were used to analyze mitochondrial function. RESULTS: Using a proximity ligation assay, we quantitatively assessed the Parkin-SLP-2 interaction in skin fibroblasts and hiPSC-derived neurons. When PD-associated PRKN mutations were present, we detected a significantly reduced interaction between the two proteins. We found a preferential binding of SLP-2 to the N-terminal part of Parkin, with a highest affinity for the RING0 domain. Computational modeling based on the crystal structure of Parkin protein predicted several potential binding sites for SLP-2 within the Parkin RING0 domain. Amongst these, three binding sites were observed to overlap with natural PD-causing missense mutations, which we demonstrated interfere substantially with the binding of Parkin to SLP-2. Finally, delivery of the isolated Parkin RING0 domain and a Parkin mini-peptide, conjugated to cell-permeant and mitochondrial transporters, rescued compromised mitochondrial function in Parkin-deficient neuroblastoma cells and hiPSC-derived neurons with endogenous, disease causing PRKN mutations. CONCLUSIONS: These findings place further emphasis on the importance of the protein-protein interaction between Parkin and SLP-2 for the maintenance of optimal mitochondrial function. The possibility of restoring an abolished binding to SLP-2 by delivering the Parkin RING0 domain or the Parkin mini-peptide involved in this specific protein-protein interaction into cells might represent a novel organelle-specific therapeutic approach for correcting mitochondrial dysfunction in Parkin-linked PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Neuroblastoma , Doença de Parkinson , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doença de Parkinson/genética , Peptídeos
2.
Sci Rep ; 12(1): 9880, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701444

RESUMO

α-Synuclein (αSyn) is a small disordered protein, highly conserved in vertebrates and involved in the pathogenesis of Parkinson's disease (PD). Indeed, αSyn amyloid aggregates are present in the brain of patients with PD. Although the pathogenic role of αSyn is widely accepted, the physiological function of this protein remains elusive. Beyond the central nervous system, αSyn is expressed in hematopoietic tissue and blood, where platelets are a major cellular host of αSyn. Platelets play a key role in hemostasis and are potently activated by thrombin (αT) through the cleavage of protease-activated receptors. Furthermore, both αT and αSyn could be found in the same spatial environment, i.e. the platelet membrane, as αT binds to and activates platelets that can release αSyn from α-granules and microvesicles. Here, we investigated the possibility that exogenous αSyn could interfere with platelet activation induced by different agonists in vitro. Data obtained from distinct experimental techniques (i.e. multiple electrode aggregometry, rotational thromboelastometry, immunofluorescence microscopy, surface plasmon resonance, and steady-state fluorescence spectroscopy) on whole blood and platelet-rich plasma indicate that exogenous αSyn has mild platelet antiaggregating properties in vitro, acting as a negative regulator of αT-mediated platelet activation by preferentially inhibiting P-selectin expression on platelet surface. We have also shown that both exogenous and endogenous (i.e. cytoplasmic) αSyn preferentially bind to the outer surface of activated platelets. Starting from these findings, a coherent model of the antiplatelet function of αSyn is proposed.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Doença de Parkinson/metabolismo , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Trombina/farmacologia , alfa-Sinucleína/metabolismo
3.
Cell Death Differ ; 29(12): 2335-2346, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35614131

RESUMO

Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Humanos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
4.
Sci Rep ; 11(1): 3021, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542304

RESUMO

Smart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates. Therefore, our results support the hypothesis that in stem cell differentiation, the nuclear import of gene-regulating transcription factors is controlled by a strain-dependent nuclear envelope permeability, probably related to the reorganization of stretch-activated nuclear pore complexes.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Células-Tronco Mesenquimais/metabolismo , Proteína MyoD/genética , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Nicho de Células-Tronco/genética
5.
Cell Rep ; 31(3): 107531, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320652

RESUMO

TRAP1 is the mitochondrial paralog of the heat shock protein 90 (HSP90) chaperone family. Its activity as an energy metabolism regulator has important implications in cancer, neurodegeneration, and ischemia. Selective inhibitors of TRAP1 could inform on its mechanisms of action and set the stage for targeted drug development, but their identification was hampered by the similarity among active sites in HSP90 homologs. We use a dynamics-based approach to identify a TRAP1 allosteric pocket distal to its active site that can host drug-like molecules, and we select small molecules with optimal stereochemical features to target the pocket. These leads inhibit TRAP1, but not HSP90, ATPase activity and revert TRAP1-dependent downregulation of succinate dehydrogenase activity in cancer cells and in zebrafish larvae. TRAP1 inhibitors are not toxic per se, but they abolish tumorigenic growth of neoplastic cells. Our results indicate that exploiting conformational dynamics can expand the chemical space of chaperone antagonists to TRAP1-specific inhibitors with wide therapeutic opportunities.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Chaperonas Moleculares/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Feminino , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Neoplasias de Bainha Neural/tratamento farmacológico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Peixe-Zebra
6.
Vet Res Commun ; 41(3): 211-217, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28589421

RESUMO

The Tat protein is able to translocate through the plasma membrane and when it is fused with other peptides may acts as a protein transduction system. This ability appears particularly interesting to induce tissue-specific differentiation when the Tat protein is associated to transcription factors. In the present work, the potential of the complex Tat-MyoD in inducing equine peripheral blood mesenchymal stem cells (PB-MSCs) towards the myogenic fate, was evaluated. Results showed that the internalization process of Tat-MyoD happens only in serum free conditions and that the nuclear localization of the fused complex is observed after 15 hours of incubation. However, the supplement of Tat-MyoD only was not sufficient to induce myogenesis and, therefore, in order to achieve the myogenic differentiation of PB-MSCs, conditioned medium from C2C12 cells was added without direct contact. Real Time PCR and immunofluorescence methods evaluated the establishment of a myogenic program. Our results suggest that TAT- transduction of Tat-MyoD, when supported by conditioned medium, represents a useful methodology to induce myogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Produtos do Gene tat/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína MyoD/farmacologia , Animais , Meios de Cultivo Condicionados/farmacologia , Cavalos , Células-Tronco Mesenquimais/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transdução de Sinais
7.
Toxicol Appl Pharmacol ; 309: 121-8, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27597256

RESUMO

In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury.


Assuntos
Fator Neurotrófico Ciliar/uso terapêutico , Produtos do Gene tat/química , Regeneração Nervosa , Nervos Periféricos/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fator Neurotrófico Ciliar/química , Humanos , Ratos , Transdução de Sinais
8.
Sci Rep ; 6: 23180, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976106

RESUMO

Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrP(Sc) is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrP(C) may provide an opportunity to overcome these problems. PrP(C) ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrP(C), and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrP(C)-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrP(C)-dependent synaptotoxicity of amyloid-ß (Aß) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrP(C) may produce a dual effect of blocking prion replication and inhibiting PrP(C)-mediated toxicity.


Assuntos
Metaloporfirinas/química , Proteínas PrPC/metabolismo , Proteínas Priônicas/antagonistas & inibidores , Tetrapirróis/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células HEK293 , Humanos , Metaloporfirinas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Porfirinas , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas Priônicas/química , Ligação Proteica , Proteínas Recombinantes/metabolismo , Tetrapirróis/farmacologia
9.
Neurodegener Dis ; 15(1): 13-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25500798

RESUMO

BACKGROUND: Dopaminergic degeneration is a major finding in brains of patients with Parkinson's disease (PD), together with Lewy bodies, intraneuronal inclusions mainly composed of the fibrillogenic protein α-synuclein (α-syn). The familial-PD-related protein DJ-1 was reported to reduce dopaminergic degeneration triggered by α-syn or by the dopaminergic-selective neurotoxin 6-hydroxydopamine (6-OHDA). OBJECTIVE: The aim was to further investigate the role of DJ-1 in dopaminergic degeneration and to see whether a cell-permeable recombinant form of DJ-1 (TAT-DJ-1) could restore dopamine depletion in vivo, thus representing an innovative therapeutic approach. METHODS: We developed in vitro (PC12/TetOn cells and mouse primary mesencephalic neurons) and in vivo models [including DJ-1 knockout (-/-) mice] to investigate DJ-1 in dopaminergic degeneration. RESULTS: We found that in PC12/TetOn cells overexpressing α-syn with the familial-PD linked mutation A30P, DJ-1 silencing increased α-syn (A30P) toxicity. Primary mesencephalic neurons from DJ-1 (-/-) mice were more vulnerable to a cell-permeable form of α-syn (TAT-α-syn) and to 6-OHDA. Intrastriatally administered TAT-DJ-1 reduced 6-OHDA toxicity in vivo in C57BL/6 mice. Finally, when we injected TAT-α-syn (A30P) in the striatum of DJ-1 (-/-) animals, dopamine was depleted more than in the control strain. CONCLUSION: DJ-1 appears to have a protective role against dopaminergic degeneration triggered by α-syn or 6-OHDA, reinforcing the possible therapeutic importance of this protein in PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Proteínas Oncogênicas/farmacologia , Oxidopamina/farmacologia , Peroxirredoxinas/farmacologia , alfa-Sinucleína/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteína Desglicase DJ-1 , Regulação para Cima , alfa-Sinucleína/metabolismo
10.
CNS Neurol Disord Drug Targets ; 13(5): 885-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25012617

RESUMO

The accumulation and aggregation of misfolded proteins can be highly cytotoxic and may underlie several human degenerative diseases characterized by neuronal inclusions such as Alzheimer's, Parkinson's, prion-like and polyglutamine repeat diseases. In this context small heat shock proteins, molecular chaperones known to be induced by cell stress, play a fundamental role by facilitating folding of nascent polypeptides, preventing aggregation of misfolded proteins and enhancing their degradation. A recently identified member of the small heat shock protein family, HspB8, is of particular interest in the field of neurological diseases since mutations in its sequence correlate with development of distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 expression has been detected in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington disease and spinocerebellar ataxia type 3. In the latter, HspB8 appears to be involved in protecting the cell from accumulation of insoluble aggregates either by preventing aggregation or by promoting degradation of improperly folded proteins. These data propose that HspB8 may be a major player in the neuroprotective response and a promising target for the development of therapeutic strategies.


Assuntos
Proteínas de Choque Térmico/metabolismo , Doenças do Sistema Nervoso/patologia , Sistema Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Humanos , Chaperonas Moleculares
11.
New Phytol ; 203(3): 1012-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845011

RESUMO

Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi.


Assuntos
Equorina/metabolismo , Cálcio/metabolismo , Técnicas de Transferência de Genes , Glomeromycota/fisiologia , Micorrizas/fisiologia , Simbiose/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Endocitose/efeitos dos fármacos , Meio Ambiente , Glomeromycota/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Hifas/efeitos dos fármacos , Hifas/metabolismo , Immunoblotting , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lactonas/farmacologia , Medições Luminescentes , Micorrizas/efeitos dos fármacos , Peptídeos/metabolismo , Simbiose/efeitos dos fármacos
12.
Biochim Biophys Acta ; 1830(6): 3846-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23454490

RESUMO

BACKGROUND: Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs. METHODS: Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme-substrate and protein-protein interaction were analyzed by molecular docking and surface plasmon resonance analysis. RESULTS: Oxidation of the CP is fast (k+1>10(3)M(-1)s(-1)), however the rate of reduction by GSH is slow (k'+2=12.6M(-1)s(-1)) even though molecular docking indicates a strong GSH-GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+1>10(3)M(-1)s(-1)), but not by Trx. By surface plasmon resonance analysis, a KD=5.2µM was calculated for PDI-GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo. CONCLUSIONS: GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates. GENERAL SIGNIFICANCE: In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.


Assuntos
Proteínas de Transporte/química , Glutationa/química , Simulação de Acoplamento Molecular , Peroxidases/química , Isomerases de Dissulfetos de Proteínas/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catálise , Glutationa/genética , Glutationa/metabolismo , Glutationa Peroxidase , Humanos , Camundongos , Mutação , Oxirredução , Peroxidases/genética , Peroxidases/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/genética
13.
Hum Mol Genet ; 22(11): 2152-68, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418303

RESUMO

DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.


Assuntos
Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Cálcio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Oncogênicas/genética , Fenótipo , Proteína Desglicase DJ-1 , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Frações Subcelulares/metabolismo , Proteína Supressora de Tumor p53/genética
14.
Biochim Biophys Acta ; 1832(4): 495-508, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313576

RESUMO

Loss-of-function mutations in PINK1 or parkin genes are associated with juvenile-onset autosomal recessive forms of Parkinson disease. Numerous studies have established that PINK1 and parkin participate in a common mitochondrial-quality control pathway, promoting the selective degradation of dysfunctional mitochondria by mitophagy. Upregulation of parkin mRNA and protein levels has been proposed as protective mechanism against mitochondrial and endoplasmic reticulum (ER) stress. To better understand how parkin could exert protective function we considered the possibility that it could modulate the ER-mitochondria inter-organelles cross talk. To verify this hypothesis we investigated the effects of parkin overexpression on ER-mitochondria crosstalk with respect to the regulation of two key cellular parameters: Ca(2+) homeostasis and ATP production. Our results indicate that parkin overexpression in model cells physically and functionally enhanced ER-mitochondria coupling, favored Ca(2+) transfer from the ER to the mitochondria following cells stimulation with an 1,4,5 inositol trisphosphate (InsP(3)) generating agonist and increased the agonist-induced ATP production. The overexpression of a parkin mutant lacking the first 79 residues (ΔUbl) failed to enhance the mitochondrial Ca(2+) transients, thus highlighting the importance of the N-terminal ubiquitin like domain for the observed phenotype. siRNA-mediated parkin silencing caused mitochondrial fragmentation, impaired mitochondrial Ca(2+) handling and reduced the ER-mitochondria tethering. These data support a novel role for parkin in the regulation of mitochondrial homeostasis, Ca(2+) signaling and energy metabolism under physiological conditions.


Assuntos
Cálcio/metabolismo , Metabolismo Energético , Doença de Parkinson , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/biossíntese , Sinalização do Cálcio , Estresse do Retículo Endoplasmático/genética , Células HeLa , Homeostase , Humanos , Mitofagia/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
15.
J Orthop Res ; 31(2): 306-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22893604

RESUMO

Tendon injuries, degenerative tendinopathies, and overuse tendinitis are common in races horses. Novel therapies aim to restore tendon functionality by means of cell-based therapy, growth factor delivery, and tissue engineering approaches. This study examined the use of autologous mesenchymal stromal cells derived from peripheral blood (PB-MSCs), platelet-rich plasma (PRP) and a combination of both for ameliorating experimental lesions on deep digital flexor tendons (DDFT) of Bergamasca sheep. In particular, testing the combination of blood-derived MSCs and PRP in an experimental animal model represents one of the few studies exploring a putative synergistic action of these treatments. Effectiveness of treatments was evaluated at 30 and 120 days comparing clinical, ultrasonographic, and histological features together with immunohistochemical expression of collagen types 1 and 3, and cartilage oligomeric matrix protein (COMP). Significant differences were found between treated groups and their corresponding controls (placebo) regarding tendon morphology and extracellular matrix (ECM) composition. However, our results indicate that the combined use of PRP and MSCs did not produce an additive or synergistic regenerative response and highlighted the predominant effect of MSCs on tendon healing, enhanced tissue remodeling and improved structural organization.


Assuntos
Transplante de Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Traumatismos dos Tendões/terapia , Cicatrização/efeitos dos fármacos , Animais , Colágeno Tipo I/biossíntese , Colágeno Tipo III/biossíntese , Colagenases , Sinergismo Farmacológico , Proteínas da Matriz Extracelular/biossíntese , Feminino , Glicoproteínas/biossíntese , Membro Posterior/diagnóstico por imagem , Membro Posterior/patologia , Proteínas Matrilinas , Carneiro Doméstico , Traumatismos dos Tendões/induzido quimicamente , Traumatismos dos Tendões/patologia , Ultrassonografia , Cicatrização/fisiologia
16.
J Biol Chem ; 287(22): 17914-29, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22453917

RESUMO

α-Synuclein has a central role in Parkinson disease, but its physiological function and the mechanism leading to neuronal degeneration remain unknown. Because recent studies have highlighted a role for α-synuclein in regulating mitochondrial morphology and autophagic clearance, we investigated the effect of α-synuclein in HeLa cells on mitochondrial signaling properties focusing on Ca(2+) homeostasis, which controls essential bioenergetic functions. By using organelle-targeted Ca(2+)-sensitive aequorin probes, we demonstrated that α-synuclein positively affects Ca(2+) transfer from the endoplasmic reticulum to the mitochondria, augmenting the mitochondrial Ca(2+) transients elicited by agonists that induce endoplasmic reticulum Ca(2+) release. This effect is not dependent on the intrinsic Ca(2+) uptake capacity of mitochondria, as measured in permeabilized cells, but correlates with an increase in the number of endoplasmic reticulum-mitochondria interactions. This action specifically requires the presence of the C-terminal α-synuclein domain. Conversely, α-synuclein siRNA silencing markedly reduces mitochondrial Ca(2+) uptake, causing profound alterations in organelle morphology. The enhanced accumulation of α-synuclein into the cells causes the redistribution of α-synuclein to localized foci and, similarly to the silencing of α-synuclein, reduces the ability of mitochondria to accumulate Ca(2+). The absence of efficient Ca(2+) transfer from endoplasmic reticulum to mitochondria results in augmented autophagy that, in the long range, could compromise cellular bioenergetics. Overall, these findings demonstrate a key role for α-synuclein in the regulation of mitochondrial homeostasis in physiological conditions. Elevated α-synuclein expression and/or eventually alteration of the aggregation properties cause the redistribution of the protein within the cell and the loss of modulation on mitochondrial function.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Mitocôndrias/metabolismo , alfa-Sinucleína/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , Frações Subcelulares/metabolismo
17.
Biochem Biophys Res Commun ; 418(1): 156-60, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22248692

RESUMO

Phosphorylation of α-synuclein at Ser-129 is of crucial relevance to Parkinson's disease and related synucleinopathies. Here we provide biochemical evidence that PLK2 and to a lesser extent PLK3 are superior over CK2, as catalysts of Ser-129 phosphorylation both in full length α-synuclein and in a peptide reproducing the C-terminal segment of the protein. By using substituted peptides we also show that the sequence surrounding Ser-129 is optimally shaped for undergoing phosphorylation by PLK2, with special reference to the two acidic residues at positions n-3 (Glu-126) and n+2 (Glu-131) whose replacement with alanine abrogates phosphorylation.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , alfa-Sinucleína/metabolismo , Caseína Quinase II/metabolismo , Catálise , Humanos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Serina/genética , Proteínas Supressoras de Tumor , alfa-Sinucleína/química , alfa-Sinucleína/genética
18.
Biochem J ; 425(2): 341-51, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19888917

RESUMO

Dpl (doppel) is a paralogue of the PrPC (cellular prion protein), whose misfolded conformer (the scrapie prion protein, PrPSc) is responsible for the onset of TSEs (transmissible spongiform encephalopathies) or prion diseases. It has been shown that the ectopic expression of Dpl in the brains of some lines of PrP-knockout mice provokes cerebellar ataxia, which can be rescued by the reintroduction of the PrP gene, suggesting a functional interaction between the two proteins. It is, however, still unclear where, and under which conditions, this event may occur. In the present study we addressed this issue by analysing the intracellular localization and the interaction between Dpl and PrPC in FRT (Fischer rat thyroid) cells stably expressing the two proteins separately or together. We show that both proteins localize prevalently on the basolateral surface of FRT cells, in both singly and doubly transfected clones. Interestingly we found that they associate with DRMs (detergent-resistant membranes) or lipid rafts, from where they can be co-immunoprecipitated in a cholesterol-dependent fashion. Although the interaction between Dpl and PrPC has been suggested before, our results provide the first clear evidence that this interaction occurs in rafts and is dependent on the integrity of these membrane microdomains. Furthermore, both Dpl and PrPC could be immunoprecipitated with flotillin-2, a raft protein involved in endocytosis and cell signalling events, suggesting that they share the same lipid environment.


Assuntos
Microdomínios da Membrana/química , Proteínas PrPC/metabolismo , Príons/metabolismo , Animais , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI , Imunoprecipitação , Proteínas de Membrana/metabolismo , Proteínas PrPC/análise , Príons/análise , Ligação Proteica , Ratos , Ratos Endogâmicos F344 , Glândula Tireoide/citologia
19.
J Neurochem ; 110(5): 1445-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19558452

RESUMO

Human sirtuins are a family of seven conserved proteins (SIRT1-7). The most investigated is the silent mating type information regulation-2 homolog (SIRT1, NM_012238), which was associated with neuroprotection in models of polyglutamine toxicity or Alzheimer's disease (AD) and whose activation by the phytocompound resveratrol (RES) has been described. We have examined the neuroprotective role of RES in a cellular model of oxidative stress, a common feature of neurodegeneration. RES prevented toxicity triggered by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). This action was likely mediated by SIRT1 activation, as the protection was lost in the presence of the SIRT1 inhibitor sirtinol and when SIRT1 expression was down-regulated by siRNA approach. RES was also able to protect SK-N-BE from the toxicity arising from two aggregation-prone proteins, the AD-involved amyloid-beta (1-42) peptide (Abeta42) and the familiar Parkinson's disease linked alpha-synuclein(A30P) [alpha-syn(A30P)]. Alpha-syn(A30P) toxicity was restored by sirtinol addition, while a partial RES protective effect against Abeta42 was found even in presence of sirtinol, thus suggesting a direct RES effect on Abeta42 fibrils. We conclude that SIRT1 activation by RES can prevent in our neuroblastoma model the deleterious effects triggered by oxidative stress or alpha-syn(A30P) aggregation, while RES displayed a SIRT1-independent protective action against Abeta42.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Sirtuínas/metabolismo , Estilbenos/farmacologia , alfa-Sinucleína/toxicidade , Sequência de Aminoácidos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Dados de Sequência Molecular , Estresse Oxidativo/fisiologia , Resveratrol , Sirtuína 1 , Sirtuínas/agonistas
20.
J Neurochem ; 109(6): 1680-90, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457136

RESUMO

Ciliary neurotrophic factor (CNTF) is a multifunctional cytokine that can regulate the survival and differentiation of many types of developing and adult neurons. CNTF prevents the degeneration of motor neurons after axotomy and in mouse mutant progressive motor neuronopathy, which has encouraged trials of CNTF for human motor neuron disease. Given systemically, however, CNTF causes severe side effects, including cachexia and a marked immune response, which has limited its clinical application. The present work describes a novel approach for administering recombinant human CNTF (rhCNTF) while conserving neurotrophic activity and avoiding deleterious side effects. rhCNTF was fused to a protein transduction domain derived from the human immunodeficiency virus-1 TAT (transactivator) protein. The resulting fusion protein (TAT-CNTF) crosses the plasma membrane within minutes and displays a nuclear localization. TAT-CNTF was equipotent to rhCNTF in supporting the survival of cultured chicken embryo dorsal root ganglion neurons. Local or subcutaneous administration of TAT-CNTF, like rhCNTF rescued motor neurons from death in neonatal rats subjected to sciatic nerve transection. In contrast to subcutaneous rhCNTF, which caused a 20-30% decrease in body weight in neonatal rats between postnatal days 2 and 7 together with a considerable fat mobilization in brown adipose tissue, TAT-CNTF lacked such side effects. Together, these results indicate that rhCNTF fused with the protein transduction domain/TAT retains neurotrophic activity in the absence of CNTFs cytokine-like side effects and may be a promising candidate for the treatment of motor neuron and other neurodegenerative diseases.


Assuntos
Fator Neurotrófico Ciliar/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neuropatia Ciática/tratamento farmacológico , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Animais Recém-Nascidos , Axotomia/métodos , Peso Corporal/efeitos dos fármacos , Contagem de Células/métodos , Células Cultivadas , Embrião de Galinha , Fator Neurotrófico Ciliar/metabolismo , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Neuropatia Ciática/etiologia , Neuropatia Ciática/fisiopatologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Transdução Genética/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA