Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Immunol ; 14: 1162671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398671

RESUMO

Monocytes (Mo) are highly plastic myeloid cells that differentiate into macrophages after extravasation, playing a pivotal role in the resolution of inflammation and regeneration of injured tissues. Wound-infiltrated monocytes/macrophages are more pro-inflammatory at early time points, while showing anti-inflammatory/pro-reparative phenotypes at later phases, with highly dynamic switching depending on the wound environment. Chronic wounds are often arrested in the inflammatory phase with hampered inflammatory/repair phenotype transition. Promoting the tissue repair program switching represents a promising strategy to revert chronic inflammatory wounds, one of the major public health loads. We found that the synthetic lipid C8-C1P primes human CD14+ monocytes, restraining the inflammatory activation markers (HLA-DR, CD44, and CD80) and IL-6 when challenged with LPS, and preventing apoptosis by inducing BCL-2. We also observed increased pseudo-tubule formation of human endothelial-colony-forming cells (ECFCs) when stimulated with the C1P-macrophages secretome. Moreover, C8-C1P-primed monocytes skew differentiation toward pro-resolutive-like macrophages, even in the presence of inflammatory PAMPs and DAMPs by increasing anti-inflammatory and pro-angiogenic gene expression patterns. All these results indicate that C8-C1P could restrain M1 skewing and promote the program of tissue repair and pro-angiogenic macrophage.


Assuntos
Macrófagos , Monócitos , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo , Fenótipo , Apoptose
3.
J Thromb Haemost ; 17(12): 2196-2210, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31397069

RESUMO

BACKGROUND: Platelet Toll-like receptor (TLR)2/4 are key players in amplifying the host immune response; however, their role in human megakaryo/thrombopoiesis has not yet been defined. OBJECTIVES: We evaluated whether Pam3CSK4 or lipopolysaccharide (LPS), TLR2/4 ligands respectively, modulate human megakaryocyte development and platelet production. METHODS: CD34+ cells from human umbilical cord were stimulated with LPS or Pam3CSK4 with or without thrombopoietin (TPO). RESULTS: CD34+ cells and megakaryocytes express TLR2 and TLR4 at both RNA and protein level; however, direct stimulation of CD34+ cells with LPS or Pam3CSK4 had no effect on cell growth. Interestingly, both TLR ligands markedly increased TPO-induced CD34+ cell proliferation, megakaryocyte number and maturity, proplatelet and platelet production when added at day 0. In contrast, this synergism was not observed when TLR agonists were added 7 days after TPO addition. Interleukin-6 (IL-6) release was observed upon CD34+ or megakaryocyte stimulation with LPS or Pam3CSK4 but not with TPO and this effect was potentiated in combination with TPO. The increased proliferation and IL-6 production induced by TPO + LPS or Pam3CSK4 were suppressed by TLR2/4 or IL-6 neutralizing antibodies, as well as by PI3K/AKT and nuclear factor-κB inhibitors. Additionally, increased proplatelet and platelet production were associated with enhanced nuclear translocation of nuclear factor-E2. Finally, the supernatants of CD34+ cells stimulated with TPO+LPS-induced CFU-M colonies. CONCLUSIONS: Our data suggest that the activation of TLR2 and TLR4 in CD34+ cells and megakaryocytes in the presence of TPO may contribute to warrant platelet provision during infection episodes by an autocrine IL-6 loop triggered by PI3K/NF-κB axes.


Assuntos
Antígenos CD34/metabolismo , Plaquetas/efeitos dos fármacos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Megacariócitos/efeitos dos fármacos , Trombopoese/efeitos dos fármacos , Trombopoetina/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas , Plaquetas/imunologia , Plaquetas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Interleucina-6/metabolismo , Megacariócitos/imunologia , Megacariócitos/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 39(10): e219-e232, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434496

RESUMO

OBJECTIVE: Ceramide 1-phosphate (C1P) is a bioactive sphingolipid highly augmented in damaged tissues. Because of its abilities to stimulate migration of murine bone marrow-derived progenitor cells, it has been suggested that C1P might be involved in tissue regeneration. In the present study, we aimed to investigate whether C1P regulates survival and angiogenic activity of human progenitor cells with great therapeutic potential in regenerative medicine such as endothelial colony-orming cells (ECFCs). Approach and Results: C1P protected ECFC from TNFα (tumor necrosis factor-α)-induced and monosodium urate crystal-induced death and acted as a potent chemoattractant factor through the activation of ERK1/2 (extracellular signal-regulated kinases 1 and 2) and AKT pathways. C1P treatment enhanced ECFC adhesion to collagen type I, an effect that was prevented by ß1 integrin blockade, and to mature endothelial cells, which was mediated by the E-selectin/CD44 axis. ECFC proliferation and cord-like structure formation were also increased by C1P, as well as vascularization of gel plug implants loaded or not with ECFC. In a murine model of hindlimb ischemia, local administration of C1P alone promoted blood perfusion and reduced necrosis in the ischemic muscle. Additionally, the beneficial effects of ECFC infusion after ischemia were amplified by C1P pretreatment, resulting in a further and significant enhancement of leg reperfusion and muscle repair. CONCLUSIONS: Our findings suggest that C1P may have therapeutic relevance in ischemic disorders, improving tissue repair by itself, or priming ECFC angiogenic responses such as chemotaxis, adhesion, proliferation, and tubule formation, which result in a better outcome of ECFC-based therapy.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Camundongos , Morfogênese/efeitos dos fármacos , Sensibilidade e Especificidade
5.
Cell Rep ; 28(4): 896-908.e5, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340152

RESUMO

We investigated the contribution of human platelets to macrophage effector properties in the presence of lipopolysaccharide (LPS), as well as the beneficial effects and time frame for platelet transfusion in septic animals. Our results show that platelets sequester both pro-(TNF-α/IL-6) and anti-(IL-10) inflammatory cytokines released by monocytes. Low LPS concentrations (0.01 ng/mL) induced M2 macrophage polarization by decreasing CD64 and augmenting CD206 and CD163 expression; yet, the presence of platelets skewed monocytes toward type 1 macrophage (M1) phenotype in a cell-contact-dependent manner by the glycoprotein Ib (GPIb)-CD11b axis. Accordingly, platelet-licensed macrophages showed increased TNF-α levels, bacterial phagocytic activity, and a reduced healing capability. Platelet transfusion increased inducible nitric oxide synthase (iNOS)+ macrophages, improving bacterial clearance and survival rates in septic mice up to 6 h post-infection, an effect that was abolished by CD11b and GPIb blockade. Our results demonstrate that platelets orchestrate macrophage effector responses, improving the clinical outcome of sepsis in a narrow but relevant time frame.


Assuntos
Plaquetas/metabolismo , Polaridade Celular , Inflamação/patologia , Macrófagos/patologia , Sepse/sangue , Animais , Anti-Inflamatórios/metabolismo , Plaquetas/efeitos dos fármacos , Antígeno CD11b/metabolismo , Comunicação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transfusão de Plaquetas , Sepse/patologia , Choque Séptico/patologia , Análise de Sobrevida
6.
Stem Cell Res Ther ; 9(1): 120, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720269

RESUMO

BACKGROUND: We have previously demonstrated that acidic preconditioning of human endothelial colony-forming cells (ECFC) increased proliferation, migration, and tubulogenesis in vitro, and increased their regenerative potential in a murine model of hind limb ischemia without baseline disease. We now analyze whether this strategy is also effective under adverse conditions for vasculogenesis, such as the presence of ischemia-related toxic molecules or diabetes, one of the main target diseases for cell therapy due to their well-known healing impairments. METHODS: Cord blood-derived CD34+ cells were seeded in endothelial growth culture medium (EGM2) and ECFC colonies were obtained after 14-21 days. ECFC were exposed at pH 6.6 (preconditioned) or pH 7.4 (nonpreconditioned) for 6 h, and then pH was restored at 7.4. A model of type 2 diabetes induced by a high-fat and high-sucrose diet was developed in nude mice and hind limb ischemia was induced in these animals by femoral artery ligation. A P value < 0.05 was considered statistically significant (by one-way analysis of variance). RESULTS: We found that acidic preconditioning increased ECFC adhesion and the release of pro-angiogenic molecules, and protected ECFC from the cytotoxic effects of monosodium urate crystals, histones, and tumor necrosis factor (TNF)α, which induced necrosis, pyroptosis, and apoptosis, respectively. Noncytotoxic concentrations of high glucose, TNFα, or their combination reduced ECFC proliferation, stromal cell-derived factor (SDF)1-driven migration, and tubule formation on a basement membrane matrix, whereas almost no inhibition was observed in preconditioned ECFC. In type 2 diabetic mice, intravenous administration of preconditioned ECFC significantly induced blood flow recovery at the ischemic limb as measured by Doppler, compared with the phosphate-buffered saline (PBS) and nonpreconditioned ECFC groups. Moreover, the histologic analysis of gastrocnemius muscles showed an increased vascular density and reduced signs of inflammation in the animals receiving preconditioned ECFC. CONCLUSIONS: Acidic preconditioning improved ECFC survival and angiogenic activity in the presence of proinflammatory and damage signals present in the ischemic milieu, even under high glucose conditions, and increased their therapeutic potential for postischemia tissue regeneration in a murine model of type 2 diabetes. Collectively, our data suggest that acidic preconditioning of ECFC is a simple and inexpensive strategy to improve the effectiveness of cell transplantation in diabetes, where tissue repair is highly compromised.


Assuntos
Ácidos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Células Progenitoras Endoteliais/metabolismo , Glucose/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Nus
7.
PLoS One ; 12(6): e0179897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662055

RESUMO

The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis.


Assuntos
Regulação para Baixo , Melanoma Experimental/irrigação sanguínea , Fator 88 de Diferenciação Mieloide/metabolismo , Neovascularização Patológica , Animais , Proliferação de Células , Inativação Gênica , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética
8.
PLoS One ; 11(7): e0160094, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467588

RESUMO

Current treatment of retinoblastoma involves using the maximum dose of chemotherapy that induces tumor control and is tolerated by patients. The impact of dose and schedule on the cytotoxicity of chemotherapy has not been studied. Our aim was to gain insight into the cytotoxic and antiangiogenic effect of the treatment scheme of chemotherapy used in retinoblastoma by means of different in vitro models and to evaluate potential effects on multi-drug resistance proteins. Two commercial and two patient-derived retinoblastoma cell types and two human vascular endothelial cell types were exposed to increasing concentrations of melphalan or topotecan in a conventional (single exposure) or metronomic (7-day continuous exposure) treatment scheme. The concentration of chemotherapy causing a 50% decrease in cell proliferation (IC50) was determined by MTT and induction of apoptosis was evaluated by flow cytometry. Expression of ABCB1, ABCG2 and ABCC1 after conventional or metronomic treatments was assessed by RT-qPCR. We also evaluated the in vivo response to conventional (0.6 mg/kg once a week for 2 weeks) and metronomic (5 days a week for 2 weeks) topotecan in a retinoblastoma xenograft model. Melphalan and topotecan were cytotoxic to both retinoblastoma and endothelial cells after conventional and metronomic treatments. A significant decrease in the IC50 (median, 13-fold; range: 3-23) was observed following metronomic chemotherapy treatment in retinoblastoma and endothelial cell types compared to conventional treatment (p<0.05). Metronomic topotecan or melphalan significantly inhibited in vitro tube formation in HUVEC and EPC compared to vehicle-treated cells (p<0.05). Both treatment schemes induced apoptosis and/or necrosis in all cell models. No significant difference was observed in the expression of ABCB1, ABCC1 or ABCG2 when comparing cells treated with melphalan or topotecan between treatment schedules at the IC50 or with control cells (p>0.05). In mice, continuous topotecan lead to significantly lower tumor volumes compared to conventional treatment after 14 days of treatment (p<0.05). Continuous exposure to melphalan or topotecan increased the chemosensitivity of retinoblastoma and endothelial cells to both chemotherapy agents with lower IC50 values compared to short-term treatment. These findings were validated in an in vivo model. None of the dosing modalities induced multidrug resistance mechanisms while apoptosis was the mechanism of cell death after both treatment schedules. Metronomic chemotherapy may be a valid option for retinoblastoma treatment allowing reductions of the daily dose.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Retinoblastoma/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Retinoblastoma/patologia
9.
J Leukoc Biol ; 99(1): 153-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26320263

RESUMO

In addition to being key elements in hemostasis and thrombosis, platelets amplify neutrophil function. We aimed to gain further insight into the stimuli, mediators, molecular pathways, and regulation of neutrophil extracellular trap formation mediated by human platelets. Platelets stimulated by lipopolysaccharide, a wall component of gram-negative bacteria, Pam3-cysteine-serine-lysine 4, a mimetic of lipopeptide from gram-positive bacteria, Escherichia coli, Staphylococcus aureus, or physiologic platelet agonists promoting neutrophil extracellular trap formation and myeloperoxidase-associated DNA activity under static and flow conditions. Although P-selectin or glycoprotein IIb/IIIa were not involved, platelet glycoprotein Ib, neutrophil cluster of differentiation 18, and the release of von Willebrand factor and platelet factor 4 seemed to be critical for the formation of neutrophil extracellular traps. The secretion of these molecules depended on thromboxane A(2) production triggered by lipopolysaccharide or Pam3-cysteine-serine-lysine 4 but not on high concentrations of thrombin. Accordingly, aspirin selectively inhibited platelet-mediated neutrophil extracellular trap generation. Signaling through extracellular signal-regulated kinase, phosphatidylinositol 3-kinase, and Src kinases, but not p38 or reduced nicotinamide adenine dinucleotide phosphate oxidase, was involved in platelet-triggered neutrophil extracellular trap release. Platelet-mediated neutrophil extracellular trap formation was inhibited by prostacyclin. Our results support a role for stimulated platelets in promoting neutrophil extracellular trap formation, reveal that an endothelium-derived molecule contributes to limiting neutrophil extracellular trap formation, and highlight platelet inhibition as a potential target for controlling neutrophil extracellular trap cell death.


Assuntos
Plaquetas/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Ativação Plaquetária , Transdução de Sinais , Células Endoteliais/metabolismo , Humanos , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/imunologia , Receptores de Superfície Celular/metabolismo
10.
Invest Ophthalmol Vis Sci ; 56(8): 4382-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26176875

RESUMO

PURPOSE: To assess in vitro cytotoxic activity and antiangiogenic effect, ocular and systemic disposition, and toxicity of digoxin in rabbits after intravitreal injection as a potential candidate for retinoblastoma treatment. METHODS: A panel of two retinoblastoma and three endothelial cell types were exposed to increasing concentrations of digoxin in a conventional (72-hour exposure) and metronomic (daily exposure) treatment scheme. Cytotoxicity was defined as the digoxin concentration that killed 50% of the cells (IC50) and was assessed with a vital dye in all cell types. Induction of apoptosis and cell-cycle status were evaluated by flow cytometry after both treatment schemes. Ocular and systemic disposition after intravitreal injection as well as toxicity was assessed in rabbits. Electroretinograms (ERGs) were recorded before and after digoxin doses and histopathological examinations were performed after enucleation. RESULTS: Digoxin was cytotoxic to retinoblastoma and endothelial cells under conventional and metronomic treatment. IC50 was comparable between both schedules and induced apoptosis in all cell lines. Calculated vitreous digoxin Cmax was 8.5 µg/mL and the levels remained above the IC50 for at least 24 hours after intravitreal injection. Plasma digoxin concentration was below 0.5 ng/ml. Retinal toxicity was evident after the third intravitreal dose with considerable changes in the ERG and histologic damage to the retina. CONCLUSIONS: Digoxin has antitumor activity for retinoblastoma while exerting antiangiogenic activity in vitro at similar concentrations. Metronomic treatment showed no advantage in terms of dose for cytotoxic effect. Four biweekly injections of digoxin led to local toxicity to the retina but no systemic toxicity in rabbits.


Assuntos
Digoxina/farmacocinética , Neoplasias Experimentais , Retina/metabolismo , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Digoxina/administração & dosagem , Relação Dose-Resposta a Droga , Eletrorretinografia , Inibidores Enzimáticos/administração & dosagem , Citometria de Fluxo , Seguimentos , Humanos , Injeções Intravítreas , Coelhos , Retina/patologia , Retina/fisiopatologia , Neoplasias da Retina/patologia , Neoplasias da Retina/fisiopatologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Resultado do Tratamento
11.
PLoS One ; 9(4): e96402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788652

RESUMO

Platelets contribute to vessel formation through the release of angiogenesis-modulating factors stored in their α-granules. Galectins, a family of lectins that bind ß-galactoside residues, are up-regulated in inflammatory and cancerous tissues, trigger platelet activation and mediate vascularization processes. Here we aimed to elucidate whether the release of platelet-derived proangiogenic molecules could represent an alternative mechanism through which galectins promote neovascularization. We show that different members of the galectin family can selectively regulate the release of angiogenic molecules by human platelets. Whereas Galectin (Gal)-1, -3, and -8 triggered vascular endothelial growth factor (VEGF) release, only Gal-8 induced endostatin secretion. Release of VEGF induced by Gal-8 was partially prevented by COX-1, PKC, p38 and Src kinases inhibitors, whereas Gal-1-induced VEGF secretion was inhibited by PKC and ERK blockade, and Gal-3 triggered VEGF release selectively through a PKC-dependent pathway. Regarding endostatin, Gal-8 failed to stimulate its release in the presence of PKC, Src and ERK inhibitors, whereas aspirin or p38 inhibitor had no effect on endostatin release. Despite VEGF or endostatin secretion, platelet releasates generated by stimulation with each galectin stimulated angiogenic responses in vitro including endothelial cell proliferation and tubulogenesis. The platelet angiogenic activity was independent of VEGF and was attributed to the concerted action of other proangiogenic molecules distinctly released by each galectin. Thus, secretion of platelet-derived angiogenic molecules may represent an alternative mechanism by which galectins promote angiogenic responses and its selective blockade may lead to the development of therapeutic strategies for angiogenesis-related diseases.


Assuntos
Plaquetas/metabolismo , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/metabolismo , Neovascularização Fisiológica , Linhagem Celular , Endostatinas/metabolismo , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Angiogenesis ; 17(4): 867-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24854678

RESUMO

OBJECTIVE: Acidosis is present in several pathological conditions where vasculogenesis takes place including ischemia, tumor growth and wound healing. We have previously demonstrated that acidosis induces human CD34+ cell apoptosis. Considering that endothelial colony-forming cells (ECFC) are a subpopulation of CD34+ cells and key players in vasculogenesis, in the present study we investigated the effect of acidosis on the survival and functionality of ECFC. APPROACH AND RESULTS: Endothelial colony-forming cells obtained by differentiation of human cord blood CD34+ cells in endothelial growth medium-2 for 14-21 days were exposed at pH 7.4, 7.0 or 6.6. We found that acidosis failed to induce ECFC apoptosis and, although an early reduction in proliferation, chemotaxis, wound healing and capillary-like tubule formation was observed, once the medium pH was restored to 7.4, ECFC proliferation and tubulogenesis were augmented. Stromal cell derived factor-1 (SDF1)-driven migration and chemokine receptor type 4 surface expression were also increased. The maximal proangiogenic effect exerted by acidic preconditioning was observed after 6 h at pH 6.6. Furthermore, preconditioned ECFC showed an increased ability to promote tissue revascularization in a murine model of hind limb ischemia. Immunoblotting assays showed that acidosis activated AKT and ERK1/2 and inhibited p38 pathways. Proliferation rises triggered by acidic preconditioning were no longer observed after AKT or ERK1/2 inhibition, whereas p38 suppression not only mimicked but also potentiated the effect of acidosis on ECFC tubule formation abilities. CONCLUSIONS: These results demonstrate that acidic preconditioning greatly increases ECFC-mediated angiogenesis in vitro including ECFC proliferation, tubulogenesis and SDF1-driven chemotaxis and is a positive regulator of microvessel formation in vivo.


Assuntos
Ácidos/química , Meios de Cultura/química , Células Endoteliais/citologia , Células-Tronco/citologia , Animais , Antígenos CD34/metabolismo , Apoptose , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Quimiotaxia , Humanos , Concentração de Íons de Hidrogênio , Isquemia/patologia , Masculino , Camundongos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Cicatrização
13.
Thromb Res ; 133(2): 235-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24331207

RESUMO

INTRODUCTION: Platelets express Toll-like receptors (TLRs) that recognise molecular components of pathogens and, in nucleated cells, elicit immune responses through nuclear factor-kappaB (NF-κB) activation. We have shown that NF-κB mediates platelet activation in response to classical agonists, suggesting that this transcription factor exerts non-genomic functions in platelets. The aim of this study was to determine whether NF-κB activation is a downstream signal involved in TLR2 and 4-mediated platelet responses. MATERIAL AND METHODS: Aggregation and ATP release were measured with a Lumi-aggregometer. Fibrinogen binding, P-selectin and CD40 ligand (CD40L) levels and platelet-neutrophil aggregates were measured by cytometry. I kappa B alpha (IκBα) degradation and p65 phosphorylation were determined by Western blot and von Willebrand factor (vWF) by ELISA. RESULTS: Platelet stimulation with Pam3CSK4 or LPS resulted in IκBα degradation and p65 phosphorylation. These responses were suppressed by TLR2 and 4 blocking and synergised by thrombin. Aggregation, fibrinogen binding and ATP and vWF release were triggered by Pam3CSK4. LPS did not induce platelet responses per se, except for vWF release, but it did potentiate thrombin-induced aggregation, fibrinogen binding and ATP secretion. Pam3CSK4, but not LPS, induced P-selectin and CD40L expression and mixed aggregate formation. All of these responses, except for CD40L expression, were inhibited in platelets treated with the NF-κB inhibitors BAY 11-7082 or Ro 106-9920. CONCLUSION: TLR2 and 4 agonists trigger platelet activation responses through NF-κB. These data show another non-genomic function of NF-κB in platelets and highlight this molecule as a potential target to prevent platelet activation in inflammatory or infectious diseases.


Assuntos
Plaquetas/efeitos dos fármacos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/imunologia , Ativação Plaquetária/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Plaquetas/citologia , Plaquetas/imunologia , Humanos , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
14.
FASEB J ; 26(7): 2788-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22456341

RESUMO

Understanding noncanonical mechanisms of platelet activation represents an important challenge for the identification of novel therapeutic targets in bleeding disorders, thrombosis, and cancer. We previously reported that galectin-1 (Gal-1), a ß-galactoside-binding protein, triggers platelet activation in vitro. Here we investigated the molecular mechanisms underlying this function and the physiological relevance of endogenous Gal-1 in hemostasis. Mass spectrometry analysis, as well as studies using blocking antibodies against the anti-α(IIb) subunit ofα(IIb)ß(3) integrin or platelets from patients with Glanzmann's thrombasthenia syndrome (α(IIb)ß(3) deficiency), identified this integrin as a functional Gal-1 receptor in platelets. Binding of Gal-1 to platelets triggered the phosphorylation of ß(3)-integrin, Syk, MAPKs, PI3K, PLCγ2, thromboxane (TXA(2)) release, and Ca(2+) mobilization. Not only soluble but also immobilized Gal-1 promoted platelet activation. Gal-1-deficient (Lgals1(-/-)) mice showed increased bleeding time (P<0.0002, knockout vs. wild type), which was not associated with an abnormal platelet count. Lgals1(-/-) platelets exhibited normal aggregation to PAR4, ADP, arachidonic acid, or collagen but abnormal ATP release at low collagen concentrations. Impaired spreading on fibrinogen and clot retraction with normal levels of α(IIb)ß(3) was also observed in Lgals1(-/-) platelets, indicating a failure in the "outside-in" signaling through this integrin. This study identifies a noncanonical mechanism, based on galectin-integrin interactions, for regulating platelet activation.


Assuntos
Galectina 1/sangue , Hemostasia/fisiologia , Ativação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Animais , Tempo de Sangramento , Galectina 1/deficiência , Galectina 1/genética , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Ligação Proteica , Transdução de Sinais , Trombastenia/sangue
15.
Int J Cancer ; 131(1): 18-29, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21796622

RESUMO

Apoptosis genes, such as TP53 and p16/CDKN2A, that mediate responses to cytotoxic chemotherapy, are frequently nonfunctional in melanoma. Differentiation may be an alternative to apoptosis for inducing melanoma cell cycle exit. Epigenetic mechanisms regulate differentiation, and DNA methylation alterations are associated with the abnormal differentiation of melanoma cells. The effects of the deoxycytidine analogue decitabine (5-aza-2'-deoxycytidine), which depletes DNA methyl transferase 1 (DNMT1), on melanoma differentiation were examined. Treatment of human and murine melanoma cells in vitro with concentrations of decitabine that did not cause apoptosis inhibited proliferation accompanied by cellular differentiation. A decrease in promoter methylation, and increase in expression of the melanocyte late-differentiation driver SOX9, was followed by increases in cyclin-dependent kinase inhibitors (CDKN) p27/CDKN1B and p21/CDKN1A that mediate cell cycle exit with differentiation. Effects were independent of the TP53, p16/CDKN2A and also the BRAF status of the melanoma cells. Resistance, when observed, was pharmacologic, characterized by diminished ability of decitabine to deplete DNMT1. Treatment of murine melanoma models in vivo with intermittent, low-dose decitabine, administered sub-cutaneously to limit high peak drug levels that cause cytotoxicity and increase exposure time for DNMT1 depletion, and with tetrahydrouridine to decrease decitabine metabolism and further increase exposure time, inhibited tumor growth and increased molecular and tumor stromal factors implicated in melanocyte differentiation. Modification of decitabine dose, schedule and formulation for differentiation rather than cytotoxic objectives inhibits the growth of melanoma cells in vitro and in vivo.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Melanoma Experimental/tratamento farmacológico , Animais , Apoptose , Azacitidina/administração & dosagem , Azacitidina/farmacologia , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Inibidoras de Quinase Dependente de Ciclina/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/análise , Metilação de DNA , Decitabina , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/biossíntese , Fatores de Transcrição SOX9/biossíntese , Análise de Sequência de DNA , Tetra-Hidrouridina/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
16.
Blood ; 119(5): 1240-7, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22160381

RESUMO

The deoxycytidine analog decitabine (DAC) can deplete DNA methyl-transferase 1 (DNMT1) and thereby modify cellular epigenetics, gene expression, and differentiation. However, a barrier to efficacious and accessible DNMT1-targeted therapy is cytidine deaminase, an enzyme highly expressed in the intestine and liver that rapidly metabolizes DAC into inactive uridine counterparts, severely limiting exposure time and oral bioavailability. In the present study, the effects of tetrahydrouridine (THU), a competitive inhibitor of cytidine deaminase, on the pharmacokinetics and pharmacodynamics of oral DAC were evaluated in mice and nonhuman primates. Oral administration of THU before oral DAC extended DAC absorption time and widened the concentration-time profile, increasing the exposure time for S-phase-specific depletion of DNMT1 without the high peak DAC levels that can cause DNA damage and cytotoxicity. THU also decreased interindividual variability in pharmacokinetics seen with DAC alone. One potential clinical application of DNMT1-targeted therapy is to increase fetal hemoglobin and treat hemoglobinopathy. Oral THU-DAC at a dose that would produce peak DAC concentrations of less than 0.2µM administered 2×/wk for 8 weeks to nonhuman primates was not myelotoxic, hypomethylated DNA in the γ-globin gene promoter, and produced large cumulative increases in fetal hemoglobin. Combining oral THU with oral DAC changes DAC pharmacology in a manner that may facilitate accessible noncytotoxic DNMT1-targeted therapy.


Assuntos
Azacitidina/análogos & derivados , Tetra-Hidrouridina/farmacologia , Administração Oral , Animais , Antimetabólitos/farmacologia , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacocinética , Área Sob a Curva , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Azacitidina/metabolismo , Azacitidina/farmacocinética , Disponibilidade Biológica , Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina , Interações Medicamentosas , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inativação Metabólica , Injeções Intravenosas , Injeções Subcutâneas , Camundongos , Papio anubis
17.
Thromb Haemost ; 107(1): 99-110, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22159527

RESUMO

Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbß3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.


Assuntos
Acidose/metabolismo , Plaquetas/metabolismo , Neutrófilos/citologia , Trifosfato de Adenosina/metabolismo , Coagulação Sanguínea , Quimiocina CXCL12/metabolismo , Endostatinas/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Hemostasia , Humanos , Inflamação , Microscopia de Fluorescência/métodos , Fosfatidilserinas/química , Fosforilação , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transfusão de Plaquetas , Tromboxano B2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo
18.
IUBMB Life ; 63(7): 521-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21698756

RESUMO

Platelet activation at sites of vascular injury leads to the formation of a hemostatic plug. Activation of platelets is therefore crucial for normal hemostasis. However, uncontrolled platelet activation may also lead to the formation of occlusive thrombi that can cause ischemic events. Platelets can be activated by soluble molecules including thrombin, TXA2 , adenosine diphosphate (ADP), and serotonin or by adhesive extracellular matrix (ECM) proteins such as von Willebrand factor and collagen. In this article, we review recent advances on the role of galectins in platelet physiology. By acting in either soluble or immobilized form, these glycan-binding proteins trigger platelet activation through modulation of discrete signaling pathways. We also offer new hypotheses and some speculations about the role of platelet-galectin interactions not only in hemostasis and thrombosis but also in inflammation and related diseases such as atherosclerosis and cancer.


Assuntos
Plaquetas/fisiologia , Galectinas/metabolismo , Ativação Plaquetária/fisiologia , Transdução de Sinais/fisiologia , Animais , Coagulação Sanguínea/fisiologia , Hemostasia/fisiologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Trombose/fisiopatologia
19.
Exp Hematol ; 39(7): 763-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21549176

RESUMO

OBJECTIVE: Megakaryo/thrombopoiesis is a complex process regulated by multiple signals provided by the bone marrow microenvironment. Because macrophages are relevant components of the bone marrow stroma and their activation induces an upregulation of molecules that can regulate hematopoiesis, we analyzed the impact of these cells on the control of megakaryocyte development and platelet biogenesis. MATERIALS AND METHODS: The different stages of megakaryo/thrombopoiesis were analyzed by flow cytometry using an in vitro model of human cord blood CD34(+) cells stimulated with thrombopoietin in either a transwell system or conditioned media from monocyte-derived macrophages isolated from peripheral blood. Cytokines secreted from macrophages were characterized by protein array and enzyme-linked immunosorbent assay. RESULTS: Resting macrophages released soluble factors that promoted megakaryocyte growth, cell ploidy, a size increase, proplatelet production, and platelet release. Lipopolysaccharide stimulation triggered the secretion of cytokines that exerted opposite effects together with a dramatic switch of CD34(+) commitment to the megakaryocytic lineage toward the myeloid lineage. Neutralization of interleukin-8 released by stimulated macrophages partially reversed the inhibition of megakaryocyte growth. Activation of nuclear factor κB had a major role in the synthesis of molecules involved in the megakaryocyte inhibition mediated by lipopolysaccharide-stimulated macrophages. CONCLUSIONS: Our study extends our understanding about the role of the bone marrow microenvironment in the regulation of megakaryo/thrombopoiesis by showing that soluble factors derived from macrophages positively or negatively control megakaryocyte growth, differentiation, maturation, and their ability to produce platelets.


Assuntos
Citocinas/farmacologia , Macrófagos/metabolismo , Comunicação Parácrina , Trombopoese/efeitos dos fármacos , Antígenos CD34/metabolismo , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Células Cultivadas , Quimiocinas/farmacologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Sangue Fetal/citologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , NF-kappa B/metabolismo , Trombopoetina/farmacologia
20.
Transfusion ; 51(8): 1784-95, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21332728

RESUMO

BACKGROUND: Transplanted hematopoietic progenitor cells (CD34+) have shown great promise in regenerative medicine. However, the therapeutic potential of transplanted cells is limited by their poor viability. It is well known that the microenvironment in which progenitors reside substantially affects their behavior. Because extracellular acidosis is a common feature of injured tissues or the tumor microenvironment and is a critical regulator of cell survival and activation, we evaluated the impact of acidosis on CD34+ cell biology. STUDY DESIGN AND METHODS: Apoptosis was evaluated by fluorescence microscopy and binding of annexin V, hypodiploid cells, Bcl-xL expression, active caspase-3, and mitochondrial membrane potential was determined by flow cytometry. Colony-forming units were studied by clonogenic assays, and cell cycle was evaluated by flow cytometry. RESULTS: Exposure of CD34+ cells to low pH (7.0-6.5) caused intracellular acidification, decreased cell proliferation, and triggered apoptosis via the mitochondrial pathway. Whereas exposure to thrombopoietin (TPO), stem cell factor (SCF), interleukin (IL)-3 or increases in cyclic adenosine monophosphate (cAMP) levels prevented CD34+ cell death induced by acidic conditions, granulocyte-macrophage-colony-stimulating factor, FMS-like tyrosine kinase 3-ligand, erythropoietin, and vascular endothelial growth factor had no effect. Despite their cytoprotective effect, CD34+ cell expansion triggered by TPO, SCF, or IL-3 was significantly impaired at low pH. However, a cocktail of these three cytokines synergistically supported proliferation, cell cycle progression, and colony formation. DISCUSSION: Our findings indicate that an acidic milieu is deleterious for CD34+ cells and that a combination of certain cytokines and cAMP donors may improve cell viability and function. These data may be useful to develop new therapeutic strategies or to optimize protocols for regenerative medicine.


Assuntos
Ácidos/farmacologia , Antígenos CD34/metabolismo , AMP Cíclico/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-3/farmacologia , Fator de Células-Tronco/farmacologia , Trombopoetina/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA