Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38843830

RESUMO

Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.

2.
Stem Cell Reports ; 16(10): 2473-2487, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506727

RESUMO

Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0-0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.


Assuntos
Amiodarona/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Ivabradina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/efeitos adversos , Taquicardia/tratamento farmacológico , Animais , Antiarrítmicos/uso terapêutico , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Modelos Animais de Doenças , Combinação de Medicamentos , Humanos , Masculino , Células-Tronco Pluripotentes/transplante , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA