Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(7): e2350824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593339

RESUMO

Antibody-based CD47 blockade aims to activate macrophage phagocytosis of tumor cells. However, macrophages possess a high degree of phenotype heterogeneity that likely influences phagocytic capacity. In murine models, proinflammatory (M1) activation increases macrophage phagocytosis of tumor cells, but in human models, results have been conflicting. Here, we investigated the effects of proinflammatory polarization on the phagocytic response of human monocyte-derived macrophages in an in vitro model. Using both flow cytometry-based and fluorescence live-cell imaging-based phagocytosis assays, we observed that mouse monoclonal anti-CD47 antibody (B6H12) induced monocyte-derived macrophage phagocytosis of cancer cells in vitro. Proinflammatory (M1) macrophage polarization with IFN-γ+LPS resulted in a severe reduction in phagocytic response to CD47 blockade. This reduction coincided with increased expression of the antiphagocytic membrane proteins LILRB1 and Siglec-10 but was not rescued by combination blockade of the corresponding ligands. However, matrix metalloproteinase inhibitors (TAPI-0 or GM6001) partly restored response to CD47 blockade in a dose-dependent manner. In summary, these data suggest that proinflammatory (M1) activation reduces phagocytic response to CD47 blockade in human monocyte-derived macrophages.


Assuntos
Antígeno CD47 , Macrófagos , Fagocitose , Humanos , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Antígeno CD47/antagonistas & inibidores , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose/imunologia , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Inflamação/imunologia , Anticorpos Monoclonais/farmacologia , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia
2.
EMBO J ; 42(23): e111122, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916890

RESUMO

Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.


Assuntos
Cálcio , alfa-Sinucleína , Cálcio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação
3.
Cells ; 12(17)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681917

RESUMO

Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism. Transcriptomic analysis revealed that the three aquaglyceroporins, AQP3, AQP7 and AQP9, but not AQP10, are overexpressed in human breast cancer. It is, however, unknown if they are all expressed in the same cells or have a heterogeneous expression pattern. To investigate this, we employed immunohistochemical analysis of serial sections from human invasive ductal and lobular breast cancers. We found that AQP3, AQP7 and AQP9 are homogeneously expressed in almost all cells in both premalignant in situ lesions and invasive lesions. Thus, potential intervention strategies targeting cellular metabolism via the aquaglyceroporins should consider all three expressed aquaglyceroporins, namely AQP3, AQP7 and AQP9.


Assuntos
Aquagliceroporinas , Neoplasias da Mama , Carcinoma Lobular , Humanos , Feminino , Transporte Biológico , Membrana Celular
4.
Nat Rev Nephrol ; 19(9): 604-618, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460759

RESUMO

Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, H2O2, ions and CO2. Moreover, AQPs are increasingly understood to contribute to various cellular processes, including cellular migration, adhesion and polarity, and to act upstream of several intracellular and intercellular signalling pathways to regulate processes such as cell proliferation, apoptosis and cell invasiveness. Of note, several AQPs are highly expressed in multiple cancers, where their expression can correlate with the spread of cancerous cells to lymph nodes and alter the response of cancers to conventional chemotherapeutics. These data suggest that AQPs have diverse roles in various homeostatic and physiological systems and may be exploited for prognostics and therapeutic interventions.


Assuntos
Aquaporinas , Água , Humanos , Água/metabolismo , Peróxido de Hidrogênio/metabolismo , Aquaporinas/química , Aquaporinas/metabolismo , Água Corporal/metabolismo , Homeostase
5.
Cells ; 12(8)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190049

RESUMO

Sex hormones play an important role in the regulation of water homeostasis, and we have previously shown that tamoxifen (TAM), a selective estrogen receptor modulator (SERM), affects the regulation of aquaporin (AQP)-2. In this study, we investigated the effect of TAM on the expression and localization of AQP3 in collecting ducts using various animal, tissue, and cell models. The impact of TAM on AQP3 regulation was studied in rats subjected to 7 days of unilateral ureteral obstruction (UUO), with the rats fed a lithium-containing diet to induce nephrogenic diabetes insipidus (NDI), as well as in human precision-cut kidney slices (PCKS). Moreover, intracellular trafficking of AQP3 after TAM treatment was investigated in Madin-Darby Canine Kidney (MDCK) cells stably expressing AQP3. In all models, the expression of AQP3 was evaluated by Western blotting, immunohistochemistry and qPCR. TAM administration attenuated UUO-induced downregulation of AQP3 and affected the localization of AQP3 in both the UUO model and the lithium-induced NDI model. In parallel, TAM also affected the expression profile of other basolateral proteins, including AQP4 and Na/K-ATPase. In addition, TGF-ß and TGF-ß+TAM treatment affected the localization of AQP3 in stably transfected MDCK cells, and TAM partly attenuated the reduced AQP3 expression in TGF-ß exposed human tissue slices. These findings suggest that TAM attenuates the downregulation of AQP3 in a UUO model and a lithium-induced NDI model and affects the intracellular localization in the collecting ducts.


Assuntos
Diabetes Insípido Nefrogênico , Túbulos Renais Coletores , Obstrução Ureteral , Ratos , Humanos , Animais , Cães , Aquaporina 3/metabolismo , Lítio/farmacologia , Tamoxifeno/farmacologia , Rim/metabolismo , Aquaporina 2/metabolismo
6.
Am J Physiol Cell Physiol ; 324(2): C307-C319, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468842

RESUMO

Breast carcinomas originate from cells in the terminal duct-lobular unit. Carcinomas are associated with increased cell proliferation and migration, altered cellular adhesion, as well as loss of epithelial polarity. In breast cancer, aberrant and high levels of aquaporin-5 (AQP5) are associated with increased metastasis, poor prognosis, and cancer recurrence. AQP5 increases the proliferation and migration of cancer cells, and ectopic expression of AQP5 in normal epithelial cells reduces cell-cell adhesion and increases cell detachment and dissemination from migrating cell sheets, the latter via AQP5-mediated activation of the Ras pathway. Here, we investigated if AQP5 also affects cellular polarity by examining the relationship between the essential polarity protein Scribble and AQP5. In tissue samples from invasive lobular and ductal carcinomas, the majority of cells with high AQP5 expression displayed low Scribble levels, indicating an inverse relationship. Probing for interactions via a Glutathione S-transferase pull-down experiment revealed that AQP5 and Scribble interacted. Moreover, overexpression of AQP5 in the breast cancer cell line MCF7 reduced both size and circularity of three-dimensional (3-D) spheroids and induced cell detachment and dissemination from migrating cell sheets. In addition, Scribble levels were reduced. An AQP5 mutant cell line, which cannot activate Ras (AQP5S156A) signaling, displayed unchanged spheroid size and circularity and an intermediate level of Scribble, indicating that the effect of AQP5 on Scribble is, at least in part, dependent on AQP5-mediated activation of Ras. Thus, our results suggest that high AQP5 expression negatively regulates the essential polarity protein Scribble and thus, can affect cellular polarity in breast cancer.


Assuntos
Aquaporina 5 , Neoplasias da Mama , Feminino , Humanos , Aquaporina 5/genética , Aquaporina 5/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Polaridade Celular , Células Epiteliais/metabolismo
7.
Biochem Biophys Res Commun ; 639: 126-133, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481356

RESUMO

Aquaporin (AQP) water channels facilitate water transport across cellular membranes and are essential in regulation of body water balance. Moreover, several AQPs are overexpressed or ectopically expressed in breast cancer. Interestingly, several in vitro studies have suggested that AQPs can affect the response to conventional anticancer chemotherapies. Therefore, we took a systematic approach to test how AQP1, AQP3 and AQP5, which are often over-/ectopically expressed in breast cancer, affect total viability of 3-dimensional (3D) breast cancer cell spheroids when treated with the conventional anticancer chemotherapies Cisplatin, 5-Fluorouracil (5-FU) and Doxorubicin, a Combination of the three drugs as well as the Combination plus the Ras inhibitor Salirasib. Total viability of spheroids overexpressing AQP1 were decreased by all treatments except for 5-FU, which increased total viability by 20% compared to DMSO treated controls. All treatments reduced viability of spheroids overexpressing AQP3. In contrast, only Doxorubicin, Combination and Combination + Salirasib reduced total viability of spheroids overexpressing AQP5. Thus, this study supports a significant role of AQPs in the response to conventional chemotherapies. Evaluating the role of individual proteins that contribute to resistance to chemotherapies is essential in advancing personalized medicine in breast carcinomas.


Assuntos
Aquaporinas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Aquaporinas/metabolismo , Fluoruracila/farmacologia , Doxorrubicina/farmacologia , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 5/metabolismo , Aquaporina 3/genética , Aquaporina 3/metabolismo , Aquaporina 4 , Aquaporina 2
8.
APMIS ; 130(5): 253-260, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35114014

RESUMO

The water channel aquaporin-5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation. AQP5 has also been shown to be involved in the dysregulation of epithelial cell-cell adhesion; frequently observed in cancers. Insight into the underlying molecular mechanisms of how AQP5 contributes to cancer development and progression is essential for potentially implementing AQP5 as a prognostic biomarker and to develop targeted intervention strategies for the treatment of breast cancer patients.


Assuntos
Aquaporina 5 , Neoplasias da Mama , Aquaporina 5/genética , Aquaporina 5/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Feminino , Humanos , Metástase Linfática , Água/metabolismo
9.
APMIS ; 130(1): 3-10, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34758159

RESUMO

The canonical function of aquaporin (AQP) water channels is to facilitate passive transport of water across cellular membranes making them essential in the regulation of body water homeostasis. Moreover, AQPs, including AQP1, have been found to be overexpressed in multiple cancer types, including breast cancer, where AQP1 overexpression is associated with poor prognosis. AQPs have been shown to affect cellular processes associated with cancer progression and spread including cell migration, angiogenesis, and proliferation. Moreover, AQPs can regulate levels of adhesion proteins at cell-cell junctions, a regulatory role, which is still largely unexplored in cancer. Understanding the molecular mechanisms of how AQP1 contributes to breast cancer progression and metastatic processes is essential to establish AQP1 as a biomarker and to develop targeted anticancer treatments for breast cancer patients. This mini-review focuses on the role of AQP1 in breast cancer.


Assuntos
Aquaporinas/fisiologia , Neoplasias da Mama/fisiopatologia , Movimento Celular , Proliferação de Células , Junções Intercelulares/metabolismo , Neovascularização Patológica/metabolismo , Transdução de Sinais , Aquaporinas/química , Carcinogênese/metabolismo , Membrana Celular/metabolismo , Feminino , Homeostase , Humanos , Metástase Neoplásica
10.
APMIS ; 129(12): 700-705, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34582595

RESUMO

Aquaporins are water channel proteins facilitating passive transport of water across cellular membranes. Aquaporins are over- or ectopically expressed in a multitude of cancers, including pancreatic ductal adenocarcinoma, which is a highly aggressive cancer with low survival rate. Evidence suggests that aquaporins can affect multiple cellular processes involved in cancer development and progression including epithelial-mesenchymal transition, cellular migration, cell proliferation, invasion, and cellular adhesions. In pancreatic ductal adenocarcinoma, aquaporin-1, aquaporin-3, and aquaporin-5 are overexpressed and have been associated with metastatic processes and poor survival. Thus, aquaporin expression has been suggested as diagnostic markers and therapeutic targets in pancreatic ductal adenocarcinoma.


Assuntos
Aquaporinas/fisiologia , Carcinoma Ductal Pancreático/etiologia , Neoplasias Pancreáticas/etiologia , Animais , Aquaporinas/análise , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Invasividade Neoplásica , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia
11.
Am J Physiol Cell Physiol ; 320(5): C771-C777, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625928

RESUMO

Aquaporin (AQP) water channels facilitate passive transport of water across cellular membranes following an osmotic gradient. AQPs are expressed in a multitude of epithelia, endothelia, and other cell types where they play important roles in physiology, especially in the regulation of body water homeostasis, skin hydration, and fat metabolism. AQP dysregulation is associated with many pathophysiological conditions, including nephrogenic diabetes insipidus, chronic kidney disease, and congestive heart failure. Moreover, AQPs have emerged as major players in a multitude of cancers where high expression correlates with metastasis and poor prognosis. Besides water transport, AQPs have been shown to be involved in cellular signaling, cell migration, cell proliferation, and regulation of junctional proteins involved in cell-cell adhesion; all cellular processes which are dysregulated in cancer. This review focuses on AQPs as regulators of junctional proteins involved in cell-cell adhesion.


Assuntos
Aquaporinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Adesão Celular , Neoplasias/metabolismo , Água/metabolismo , Animais , Aquaporinas/química , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/patologia , Estado de Hidratação do Organismo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Equilíbrio Hidroeletrolítico
12.
Am J Physiol Cell Physiol ; 320(3): C282-C292, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175575

RESUMO

Aquaporins (AQPs) are water channels that facilitate transport of water across cellular membranes. AQPs are overexpressed in several cancers. Especially in breast cancer, AQP5 overexpression correlates with spread to lymph nodes and poor prognosis. Previously, we showed that AQP5 expression reduced cell-cell adhesion by reducing levels of adherens and tight-junction proteins (e.g., ZO-1, plakoglobin, and ß-catenin) at the actual junctions. Here, we show that, when targeted to the plasma membrane, the AQP5 COOH-terminal tail domain regulated junctional proteins and, moreover, that AQP5 interacted with ZO-1, plakoglobin, ß-catenin, and desmoglein-2, which were all reduced at junctions upon AQP5 overexpression. Thus, our data suggest that AQP5 mediates the effect on cell-cell adhesion via interactions with junctional proteins independently of AQP5-mediated water transport. AQP5 overexpression in cancers may thus contribute to carcinogenesis and cancer spread by two independent mechanisms: reduced cell-cell adhesion, a characteristic of epithelial-mesenchymal transition, and increased cell migration capacity via water transport.


Assuntos
Aquaporina 5/metabolismo , Adesão Celular/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Cães , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas de Junções Íntimas/metabolismo , beta Catenina/metabolismo , gama Catenina/metabolismo
13.
Nucleic Acids Res ; 48(11): 6081-6091, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32402089

RESUMO

Herein, we characterize the cellular uptake of a DNA structure generated by rolling circle DNA amplification. The structure, termed nanoflower, was fluorescently labeled by incorporation of ATTO488-dUTP allowing the intracellular localization to be followed. The nanoflower had a hydrodynamic diameter of approximately 300 nanometer and was non-toxic for all mammalian cell lines tested. It was internalized specifically by mammalian macrophages by phagocytosis within a few hours resulting in specific compartmentalization in phagolysosomes. Maximum uptake was observed after eight hours and the nanoflower remained stable in the phagolysosomes with a half-life of 12 h. Interestingly, the nanoflower co-localized with both Mycobacterium tuberculosis and Leishmania infantum within infected macrophages although these pathogens escape lysosomal degradation by affecting the phagocytotic pathway in very different manners. These results suggest an intriguing and overlooked potential application of DNA structures in targeted treatment of infectious diseases such as tuberculosis and leishmaniasis that are caused by pathogens that escape the human immune system by modifying macrophage biology.


Assuntos
DNA/química , DNA/metabolismo , Leishmania infantum/metabolismo , Macrófagos/microbiologia , Macrófagos/parasitologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , DNA/análise , Replicação do DNA , Fluorescência , Meia-Vida , Humanos , Leishmaniose/terapia , Macrófagos/citologia , Macrófagos/imunologia , Nanoestruturas/análise , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico , Fagocitose , Fagossomos/química , Fagossomos/microbiologia , Fagossomos/parasitologia , Tuberculose/terapia
14.
Structure ; 28(5): 528-539.e9, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220302

RESUMO

Phenomycin is a bacterial mini-protein of 89 amino acids discovered more than 50 years ago with toxicity in the nanomolar regime toward mammalian cells. The protein inhibits the function of the eukaryotic ribosome in cell-free systems and appears to target translation initiation. Several fundamental questions concerning the cellular activity of phenomycin, however, have remained unanswered. In this paper, we have used morphological profiling to show that direct inhibition of translation underlies the toxicity of phenomycin in cells. We have performed studies of the cellular uptake mechanism of phenomycin, showing that endosomal escape is the toxicity-limiting step, and we have solved a solution phase high-resolution structure of the protein using NMR spectroscopy. Through bioinformatic as well as functional comparisons between phenomycin and two homologs, we have identified a peptide segment, which constitutes one of two loops in the structure that is critical for the toxicity of phenomycin.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/toxicidade , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Bacteriocinas/farmacocinética , Bacteriocinas/toxicidade , Linhagem Celular , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células MCF-7 , Camundongos , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/toxicidade , Relação Estrutura-Atividade
15.
FASEB J ; 34(2): 3379-3398, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922312

RESUMO

Aquaporin-5 (AQP5) plays a role in breast cancer cell migration. This study aimed to identify AQP5-targeting miRNAs and examine their effects on breast cancer cell migration through exosome-mediated delivery. Bioinformatic analyses identified miR-1226-3p, miR-19a-3p, and miR-19b-3p as putative regulators of AQP5 mRNA. Immunoblotting revealed a decrease of AQP5 protein abundance when each of these miRNAs was transfected into human breast cancer MDA-MB-231 cells. Quantitative real-time PCR demonstrated the reduction of AQP5 mRNA expression by the transfection of miR-1226-3p and a luciferase reporter assay revealed the reduction of AQP5 translation after the transfection of miR-19b-3p in MDA-MB-231 cells. Consistently, the transfection of each miRNA impeded cell migration. Pathway enrichment analyses showed that these three miRNAs regulate target genes, which were predominantly enriched in the gap junction pathway. For the efficient delivery of AQP5-targeting miRNAs to breast cancer cells, exosomes expressing both miRNAs and a peptide targeting interleukin-4 receptor, which is highly expressed in breast cancer cells, were bioengineered and their inhibitory effects on AQP5 protein expression and cell migration were demonstrated in MDA-MB-231 cells. Taken together, AQP5-regulating miRNAs are identified, which could be exploited for the inhibition of breast cancer cell migration via the exosome-mediated delivery.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Exossomos/metabolismo , MicroRNAs/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Feminino , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Células MCF-7 , MicroRNAs/genética , Oligopeptídeos/metabolismo
17.
Front Physiol ; 10: 948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447686

RESUMO

Arginine vasopressin (AVP) mediates water reabsorption in the kidney collecting ducts through regulation of aquaporin-2 (AQP2). Also, estrogen has been known to regulate AQP2. Consistently, we previously demonstrated that tamoxifen (TAM), a selective estrogen receptor modulator, attenuates the downregulation of AQP2 in lithium-induced nephrogenic diabetes insipidus (NDI). In this study, we investigated the AVP-independent regulation of AQP2 by TAM and the therapeutic effect of TAM on the dysregulation of AQP2 and impaired urinary concentration in a unilateral ureteral obstruction (UUO) model. Primary cultured inner medullary collecting duct (IMCD) cells from kidneys of male Sprague-Dawley rats were treated with TAM. Rats subjected to 7 days of UUO were treated with TAM by oral gavage. Changes of intracellular trafficking and expression of AQP2 were evaluated by quantitative PCR, Western blotting, and immunohistochemistry. TAM induced AQP2 protein expression and intracellular trafficking in primary cultured IMCD cells, which were independent of the vasopressin V2 receptor (V2R) and cAMP activation, the critical pathways involved in AVP-stimulated regulation of AQP2. TAM attenuated the downregulation of AQP2 in TGF-ß treated IMCD cells and IMCD suspensions prepared from UUO rats. TAM administration in vivo attenuated the downregulation of AQP2, associated with an improvement of urinary concentration in UUO rats. In addition, TAM increased CaMKII expression, suggesting that calmodulin signaling pathway is likely to be involved in the TAM-mediated AQP2 regulation. In conclusion, TAM is involved in AQP2 regulation in a vasopressin-independent manner and improves urinary concentration by attenuating the downregulation of AQP2 and maintaining intracellular trafficking in UUO.

18.
Am J Physiol Renal Physiol ; 317(1): F124-F132, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091121

RESUMO

Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.


Assuntos
Aquaporina 2/metabolismo , Microscopia de Fluorescência , Imagem com Lapso de Tempo , Animais , Aquaporina 2/genética , Membrana Celular/metabolismo , AMP Cíclico , Cães , Endossomos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Madin Darby de Rim Canino , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção
19.
FASEB J ; 33(6): 6980-6994, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840830

RESUMO

Plasticity of epithelial cell-cell adhesion is vital in epithelial homeostasis and is regulated in multiple processes associated with cell migration, such as embryogenesis and wound healing. In cancer, cell-cell adhesion is compromised and is associated with increased cell migration and metastasis. Aquaporin (AQP) water channels facilitate water transport across cell membranes and are essential in the regulation of body water homeostasis. Increased expression of several AQPs, especially AQP5, is associated with increased cancer cell migration, metastasis, and poor prognosis. We found that AQP5 overexpression in normal epithelial cells induced cell detachment and dissemination from migrating cell sheets. AQP5 reduced both cell-cell coordination during collective migration and overall distance covered by the migrating cell sheets. AQP5 and the isoforms AQP1 and AQP4 decreased, whereas AQP3 increased, levels of plasma membrane-associated lateral junctional proteins. This regulation was mediated by the cytoplasmic domains of the AQPs. This shows that the AQPs have dual functions in epithelial physiology: as channel proteins and as differential regulators of cell-cell adhesiveness. This regulation may contribute to dynamic regulation of cell junctions in processes such as embryogenesis and wound healing and also explain the pivotal roles of AQPs in carcinogenesis and metastasis.-Login, F. H., Jensen, H. H., Pedersen, G. A., Koffman, J. S., Kwon, T.-H., Parsons, M., Nejsum, L. N. Aquaporins differentially regulate cell-cell adhesion in MDCK cells.


Assuntos
Aquaporinas/metabolismo , Adesão Celular/fisiologia , Animais , Aquaporinas/genética , Moléculas de Adesão Celular , Membrana Celular , Cães , Regulação da Expressão Gênica , Células Madin Darby de Rim Canino
20.
J Physiol ; 597(3): 849-867, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471113

RESUMO

KEY POINTS: Exogenous Na+ /H+ exchanger 1 (NHE1) expression stimulated the collective migration of epithelial cell sheets Stimulation with epidermal growth factor, a key morphogen, primarily increased migration of the front row of cells, whereas NHE1 increased that of submarginal cell rows, and the two stimuli were additive Accordingly, NHE1 localized not only to the leading edges of leader cells, but also in cryptic lamellipodia in submarginal cell rows NHE1 expression disrupted the morphology of epithelial cell sheets and three-dimensional cysts ABSTRACT: Collective cell migration plays essential roles in embryonic development, in normal epithelial repair processes, and in many diseases including cancer. The Na+ /H+ exchanger 1 (NHE1, SLC9A1) is an important regulator of motility in many cells and has been widely studied for its roles in cancer, although its possible role in collective migration of normal epithelial cells has remained unresolved. In the present study, we show that NHE1 expression in MDCK-II kidney epithelial cells accelerated collective cell migration. NHE1 localized to the leading edges of leader cells, as well as to cryptic lamellipodia in submarginal cell rows. Epidermal growth factor, a kidney morphogen, increased displacement of the front row of collectively migrating cells and reduced the number of migration fingers. NHE1 expression increased the number of migration fingers and increased displacement of submarginal cell rows, resulting in additive effects of NHE1 and epidermal growth factor. Finally, NHE1 expression resulted in disorganized development of MDCK-II cell cysts. Thus, NHE1 contributes to collective migration and epithelial morphogenesis, suggesting roles for the transporter in embryonic and early postnatal development.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Pseudópodes/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular , Cães , Desenvolvimento Embrionário/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA