Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Gene ; 877: 147566, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311496

RESUMO

INTRODUCTION: Technological advances in genetic testing, particularly the adoption of noninvasive prenatal screening (NIPS) for single gene disorders such as tuberous sclerosis complex (TSC, OMIM# 613254), mean that putative/possible pathogenetic DNA variants can be identified prior to the appearance of a disease phenotype. Without a phenotype, accurate prediction of variant pathogenicity is crucial. Here, we report a TSC2 frameshift variant, NM_000548.5(TSC2):c.4255_4256delCA, predicted to result in nonsense-mediated mRNA decay (NMD) and cessation of TSC2 protein production and thus pathogenic according to ACMG criteria, identified by NIPS and subsequently detected in family members with few or no symptoms of TSC. Due to the lack of TSC-associated features in the family, we hypothesized that the deletion created a non-canonical 5' donor site resulting in cryptic splicing and a transcript encoding active TSC2 protein. Verifying the predicted effect of the variant was key to designating pathogenicity in this case and should be considered for other frameshift variants in other genetic disorders. METHODS: Phenotypic information on the family members was collected via review of the medical records and patient reports. RNA studies were performed using proband mRNA isolated from blood lymphocytes for RT-PCR and Sanger sequencing. Functional studies were performed by transient expression of the TSC2 variant proteins in cultured cells, followed by immunoblotting. RESULTS: No family members harboring the variant met any major clinical diagnostic criteria for TSC, though a few minor features non-specific to TSC were present. RNA studies supported the hypothesis that the variant caused cryptic splicing, resulting in an mRNA transcript with an in-frame deletion of 93 base pairs r.[4255_4256del, 4251_4343del], p.[(Gln1419Valfs*104), (Gln1419_Ser1449del)]. Expression studies demonstrated that the canonical function of the resulting truncated TSC2 p.Gln1419_Ser1449del protein product was maintained and similar to wildtype. CONCLUSION: Although most frameshift variants are likely to result in NMD, the NM_000548.5(TSC2):c.4255_4256delCA variant creates a cryptic 5' splice donor site, resulting in an in-frame deletion that retains TSC2 function, explaining why carriers of the variant do not have typical features of TSC. The information is important for this family and others with the same variant. Equally important is the lesson that predictions can be inaccurate, and that caution should be used when designating frameshift variants as pathogenic, especially when phenotypic information to corroborate testing results is unavailable. Our work demonstrates that functional RNA- and protein-based confirmation of the effects of DNA variants improves molecular genetic diagnostics.


Assuntos
Proteínas Supressoras de Tumor , Proteínas Supressoras de Tumor/genética , Mutação , Proteína 2 do Complexo Esclerose Tuberosa/genética , Virulência , Fenótipo , RNA Mensageiro
2.
Hum Mutat ; 43(12): 2130-2140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251260

RESUMO

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Mutação , Splicing de RNA/genética , DNA , Fibroblastos/patologia , Neurofibromina 1/genética
3.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974911

RESUMO

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo
4.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
5.
Mod Pathol ; 34(2): 264-279, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051600

RESUMO

Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2-46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0-7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Adolescente , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Transcriptoma , Adulto Jovem
6.
Structure ; 28(8): 933-942.e4, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502382

RESUMO

The TSC complex is the cognate GTPase-activating protein (GAP) for the small GTPase Rheb and a crucial regulator of the mechanistic target of rapamycin complex 1 (mTORC1). Mutations in the TSC1 and TSC2 subunits of the complex cause tuberous sclerosis complex (TSC). We present the crystal structure of the catalytic asparagine-thumb GAP domain of TSC2. A model of the TSC2-Rheb complex and molecular dynamics simulations suggest that TSC2 Asn1643 and Rheb Tyr35 are key active site residues, while Rheb Arg15 and Asp65, previously proposed as catalytic residues, contribute to the TSC2-Rheb interface and indirectly aid catalysis. The TSC2 GAP domain is further stabilized by interactions with other TSC2 domains. We characterize TSC2 variants that partially affect TSC2 functionality and are associated with atypical symptoms in patients, suggesting that mutations in TSC1 and TSC2 might predispose to neurological and vascular disorders without fulfilling the clinical criteria for TSC.


Assuntos
Domínio Catalítico , Mutação de Sentido Incorreto , Proteína 2 do Complexo Esclerose Tuberosa/química , Esclerose Tuberosa/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
7.
Sci Rep ; 10(1): 9909, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555378

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in the skin and other organs, including brain, heart, lung, kidney and bones. TSC is caused by mutations in TSC1 and TSC2. Here, we present the TSC1 and TSC2 variants identified in 168 Danish individuals out of a cohort of 327 individuals suspected of TSC. A total of 137 predicted pathogenic or likely pathogenic variants were identified: 33 different TSC1 variants in 42 patients, and 104 different TSC2 variants in 126 patients. In 40 cases (24%), the identified predicted pathogenic variant had not been described previously. In total, 33 novel variants in TSC2 and 7 novel variants in TSC1 were identified. To assist in the classification of 11 TSC2 variants, we investigated the effects of these variants in an in vitro functional assay. Based on the functional results, as well as population and genetic data, we classified 8 variants as likely to be pathogenic and 3 as likely to be benign.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/genética , Mutação , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Esclerose Tuberosa/genética , Estudos de Coortes , Análise Mutacional de DNA , Dinamarca/epidemiologia , Humanos , Esclerose Tuberosa/epidemiologia , Esclerose Tuberosa/patologia
8.
Genet Med ; 22(5): 889-897, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32015538

RESUMO

PURPOSE: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder associated with cognitive deficits. The NF1 cognitive phenotype is generally considered to be highly variable, possibly due to the observed T2-weighted hyperintensities, loss of heterozygosity, NF1-specific genetic modifiers, or allelic imbalance. METHODS: We investigated cognitive variability and assessed the contribution of genetic factors by performing a retrospective cohort study and a monozygotic twin case series. We included data of 497 children with genetically confirmed NF1 and an IQ assessment, including 12 monozygotic twin and 17 sibling sets. RESULTS: Individuals carrying an NF1 chromosomal microdeletion showed significant lower full-scale IQ (FSIQ) scores than individuals carrying intragenic pathogenic NF1 variants. For the intragenic subgroup, the variability in cognitive ability and the correlation of IQ between monozygotic NF1 twin pairs or between NF1 siblings is similar to the general population. CONCLUSIONS: The variance and heritability of IQ in individuals with NF1 are similar to that of the general population, and hence mostly driven by genetic background differences. The only factor that significantly attenuates IQ in NF1 individuals is the NF1 chromosomal microdeletion genotype. Implications for clinical management are that individuals with intragenic NF1 variants that score <1.5-2 SD below the mean of the NF1 population should be screened for additional causes of cognitive disability.


Assuntos
Neurofibromatose 1 , Criança , Cognição , Humanos , Testes de Inteligência , Neurofibromatose 1/genética , Estudos Retrospectivos , Gêmeos Monozigóticos/genética
9.
J Natl Compr Canc Netw ; 16(4): 352-358, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632054

RESUMO

mTOR inhibitors are used to treat renal cell carcinoma (RCC). Treatment response is variable and appears to correlate with genetic alterations that activate mTOR signaling. Recently, everolimus was suggested to be more effective than sunitinib in chromophobe RCC (chRCC), a tumor with frequent mTOR pathway defects. This report presents the genomic and functional characterization of a metastatic chRCC that showed complete response at metastatic sites and 80% reduction in primary tumor size upon temsirolimus treatment. After surgery, the patient remained disease-free for 8 years after temsirolimus therapy. Whole-exome sequencing (WES) revealed 2 somatic variants in TSC2, a critical negative regulator of mTOR: a splicing defect (c.5069-1G>C) and a novel missense variant [c.3200_3201delinsAA; p.(V1067E)]. In vitro functional assessment demonstrated that the V1067E substitution disrupted TSC2 function. Immunohistochemistry in the tumor tissues revealed increased phosphorylated S6 ribosomal protein, indicating mTOR pathway activation. In conclusion, WES revealed TSC2 inactivation as the likely mechanism for this extraordinary response to temsirolimus. These findings support high efficacy of mTOR inhibitors in a subset of patients with chRCC and propose sequencing of mTOR pathway genes to help guide therapy.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Mutação , Sirolimo/análogos & derivados , Proteína 2 do Complexo Esclerose Tuberosa/genética , Adulto , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Biópsia , Análise Mutacional de DNA , Feminino , Humanos , Imuno-Histoquímica , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Sirolimo/administração & dosagem , Sirolimo/efeitos adversos , Sirolimo/uso terapêutico , Tomografia Computadorizada por Raios X , Resultado do Tratamento
10.
Oncotarget ; 8(56): 95516-95529, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221145

RESUMO

Subependymal giant cell astrocytomas (SEGAs) are rare, low-grade glioneuronal brain tumors that occur almost exclusively in patients with tuberous sclerosis complex (TSC). Though histologically benign, SEGAs can lead to serious neurological complications, including hydrocephalus, intractable seizures and death. Previous studies in a limited number of SEGAs have provided evidence for a biallelic two-hit inactivation of either TSC1 or TSC2, resulting in constitutive activation of the mechanistic target of rapamycin complex 1 pathway. The activating BRAF V600E mutation is a common genetic alteration in low grade gliomas and glioneuronal tumors, and has been reported in SEGAs as well. In the present study, we assessed the prevalence of the BRAF V600E mutation in a large cohort of TSC related SEGAs (n=58 patients including 56 with clinical TSC) and found no evidence of either BRAF V600E or other mutations in BRAF. To confirm that these SEGAs fit the classic model of two hit TSC1 or TSC2 inactivation, we also performed massively parallel sequencing of these loci. Nineteen (19) of 34 (56%) samples had mutations in TSC2, 10 (29%) had mutations in TSC1, while 5 (15%) had no mutation identified in TSC1/TSC2. The majority of these samples had loss of heterozygosity in the same gene in which the mutation was identified. These results significantly extend previous studies, and in agreement with the Knudson two hit mechanism indicate that biallelic alterations in TSC2 and less commonly, TSC1 are consistently seen in SEGAs.

11.
Am J Med Genet A ; 173(3): 771-775, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28211972

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited disorder with variable expressivity associated with hamartomatous tumors, abnormalities of the skin, and neurologic problems including seizures, intellectual disability, and autism. TSC is caused by pathogenic variants in either TSC1 or TSC2. In general, TSC2 pathogenic variants are associated with a more severe phenotype than TSC1 pathogenic variants. Here, we report a pathogenic TSC2 variant, c.1864C>T, p.(Arg622Trp), associated with a mild phenotype, with most carriers meeting fewer than two major clinical diagnostic criteria for TSC. This finding has significant implications for counseling patients regarding prognosis. More patient data are required before changing the surveillance recommendations for patients with the reported variant. However, consideration should be given to tailoring surveillance recommendations for all pathogenic TSC1 and TSC2 variants with documented milder clinical sequelae. © 2017 Wiley Periodicals, Inc.


Assuntos
Alelos , Estudos de Associação Genética , Mutação , Fenótipo , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Substituição de Aminoácidos , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Linhagem , Rabdomioma/diagnóstico , Rabdomioma/genética , Rabdomioma/cirurgia , Índice de Gravidade de Doença , Proteína 2 do Complexo Esclerose Tuberosa
12.
Croat Med J ; 58(6): 416-423, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308833

RESUMO

We presented an extremely severe case of tuberous sclerosis complex (TSC) in a female patient with recurring, life-threatening bleeding complications related to renal angiomyolipomas. Massive intratumoral hemorrhage required surgical removal of both angiomyolipomatous kidneys and kidney transplantation. During the follow-up period, the patient developed severe metrorrhagia that eventually led to hysterectomy and salpingo-oophorectomy. Bleeding from the operative sites caused the loss of the first kidney transplant received from the mother, and immediate hemorrhagic shock led to the loss of the second, cadaveric kidney allograft. The third kidney transplant had a successful outcome. Pathological analysis of all tissue specimens showed TSC-associated lesions and deformed blood vessels in the surgically removed organs. Molecular genetic analysis of TSC1 and TSC2 in the DNA of peripheral leukocytes identified a novel TSC2 c.3599G>C (p.R1200P) variant. Functional assessment confirmed the likely pathogenicity of the TSC2 c.3599G>C (p.R1200P) variant. To the best of our knowledge, this is the first report of the c.3599G>C (p.R1200P) variant in exon 29 of the TSC2 gene related to a severe clinical course and multiple kidney transplants in a patient with TSC.


Assuntos
Angiomiolipoma/cirurgia , Neoplasias Renais/cirurgia , Transplante de Rim/efeitos adversos , Mutação de Sentido Incorreto , Hemorragia Pós-Operatória/etiologia , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Adulto , Angiomiolipoma/genética , Éxons , Feminino , Humanos , Rim/patologia , Neoplasias Renais/genética , Recidiva Local de Neoplasia , Proteína 2 do Complexo Esclerose Tuberosa
14.
Biochim Biophys Acta ; 1863(11): 2658-2667, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27542907

RESUMO

There is a growing evidence of the role of protein acetylation in different processes controlling metabolism. Sirtuins (histone deacetylases nicotinamide adenine dinucleotide-dependent) activate autophagy playing a protective role in cell homeostasis. This study analyzes tuberous sclerosis complex (TSC2) lysine acetylation, in the regulation of mTORC1 signaling activation, autophagy and cell proliferation. Nicotinamide 5mM (a concentration commonly used to inhibit SIRT1), increased TSC2 acetylation in its N-terminal domain, and concomitantly with an augment in its ubiquitination protein status, leading to mTORC1 activation and cell proliferation. In contrast, resveratrol (RESV), an activator of sirtuins deacetylation activity, avoided TSC2 acetylation, inhibiting mTORC1 signaling and promoting autophagy. Moreover, TSC2 in its deacetylated state was prevented from ubiquitination. Using MEF Sirt1 +/+ and Sirt1 -/- cells or a SIRT1 inhibitor (EX527) in MIN6 cells, TSC2 was hyperacetylated and neither NAM nor RESV were capable to modulate mTORC1 signaling. Then, silencing Tsc2 in MIN6 or in MEF Tsc2-/- cells, the effects of SIRT1 modulation by NAM or RESV on mTORC1 signaling were abolished. We also observed that two TSC2 lysine mutants in its N-terminal domain, derived from TSC patients, differentially modulate mTORC1 signaling. TSC2 K599M variant presented a lower mTORC1 activity. However, with K106Q mutant, there was an activation of mTORC1 signaling at the basal state as well as in response to NAM. This study provides, for the first time, a relationship between TSC2 lysine acetylation status and its stability, representing a novel mechanism for regulating mTORC1 pathway.


Assuntos
Autofagia , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Animais , Autofagia/efeitos dos fármacos , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Lisina , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Niacinamida/farmacologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Interferência de RNA , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Serina-Treonina Quinases TOR/genética , Fatores de Tempo , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
15.
Eur J Hum Genet ; 24(12): 1688-1695, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406250

RESUMO

Structural brain malformations associated with Tuberous Sclerosis Complex (TSC) are related to the severity of the clinical symptoms and can be visualized by magnetic resonance imaging (MRI). Tuberous Sclerosis Complex is caused by inactivating TSC1 or TSC2 mutations. We investigated associations between TSC brain pathology and different inactivating TSC1 and TSC2 variants, and examined the potential prognostic value of subdivision of TSC2 variants based on their predicted effects on TSC2 expression. We performed genotype-phenotype associations of TSC-related brain pathology on a cohort of 64 children aged 1.4-17.9 years. Brain abnormalities were assessed using MRI. Individuals were grouped into those with an inactivating TSC1 variant and those with an inactivating TSC2 variant. The TSC2 group was subdivided into changes predicted to result in TSC2 protein expression (TSC2p) and changes predicted to prevent expression (TSC2x). The TSC2 group was associated with more and larger tubers, more radial migration lines, and more subependymal nodules than the TSC1 group. Subependymal nodules were also more likely to be calcified. Subdivision of the TSC2 group did not reveal additional, substantial differences, except for a larger number of tubers in the temporal lobe and a larger fraction of cystic tubers in the TSC2x subgroup. The severity of TSC-related brain pathology was related to the presence of an inactivating TSC2 variant. Although larger studies might find specific TSC2 variants that have prognostic value, in our cohort, subdivision of the TSC2 group did not lead to better prediction.


Assuntos
Encéfalo/diagnóstico por imagem , Genótipo , Fenótipo , Esclerose Tuberosa/genética , Adolescente , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Esclerose Tuberosa/diagnóstico , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
PLoS One ; 11(6): e0157396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27295297

RESUMO

Tuberous Sclerosis Complex (TSC) is a genetic hamartoma syndrome frequently associated with severe intractable epilepsy. In some TSC patients epilepsy surgery is a promising treatment option provided that the epileptogenic zone can be precisely delineated. TSC brain lesions (cortical tubers) contain dysmorphic neurons, brightly eosinophilic giant cells and white matter alterations in various proportions. However, a histological classification system has not been established for tubers. Therefore, the aim of this study was to define distinct histological patterns within tubers based on semi-automated histological quantification and to find clinically significant correlations. In total, we studied 28 cortical tubers and seven samples of perituberal cortex from 28 TSC patients who had undergone epilepsy surgery. We assessed mammalian target of rapamycin complex 1 (mTORC1) activation, the numbers of giant cells, dysmorphic neurons, neurons, and oligodendrocytes, and calcification, gliosis, angiogenesis, inflammation, and myelin content. Three distinct histological profiles emerged based on the proportion of calcifications, dysmorphic neurons and giant cells designated types A, B, and C. In the latter two types we were able to subsequently associate them with specific features on presurgical MRI. Therefore, these histopathological patterns provide consistent criteria for improved definition of the clinico-pathological features of cortical tubers identified by MRI and provide a basis for further exploration of the functional and molecular features of cortical tubers in TSC.


Assuntos
Córtex Cerebral/patologia , Epilepsia/complicações , Epilepsia/patologia , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Adolescente , Adulto , Córtex Cerebral/cirurgia , Criança , Pré-Escolar , Epilepsia/metabolismo , Epilepsia/cirurgia , Feminino , Gliose/complicações , Gliose/patologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Pessoa de Meia-Idade , Complexos Multiproteicos/análise , Complexos Multiproteicos/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Neurônios/patologia , Serina-Treonina Quinases TOR/análise , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/cirurgia , Adulto Jovem
17.
J Biol Chem ; 291(16): 8591-601, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893383

RESUMO

Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by the occurrence of benign tumors in various vital organs and tissues. TSC1 and TSC2, the TSC1 and TSC2 gene products, form the TSC protein complex that senses specific cellular growth conditions to control mTORC1 signaling. TBC1D7 is the third subunit of the TSC complex, and helps to stabilize the TSC1-TSC2 complex through its direct interaction with TSC1. Homozygous inactivation of TBC1D7 causes intellectual disability and megaencephaly. Here we report the crystal structure of a TSC1-TBC1D7 complex and biochemical characterization of the TSC1-TBC1D7 interaction. TBC1D7 interacts with the C-terminal region of the predicted coiled-coil domain of TSC1. The TSC1-TBC1D7 interface is largely hydrophobic, involving the α4 helix of TBC1D7. Each TBC1D7 molecule interacts simultaneously with two parallel TSC1 helices from two TSC1 molecules, suggesting that TBC1D7 may stabilize the TSC complex by tethering the C-terminal ends of two TSC1 coiled-coils.


Assuntos
Proteínas de Transporte/química , Proteínas Supressoras de Tumor/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Hum Mutat ; 37(4): 364-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26703369

RESUMO

Inactivating mutations in TSC1 and TSC2 cause tuberous sclerosis complex (TSC). The 2012 international consensus meeting on TSC diagnosis and management agreed that the identification of a pathogenic TSC1 or TSC2 variant establishes a diagnosis of TSC, even in the absence of clinical signs. However, exons 25 and 31 of TSC2 are subject to alternative splicing. No variants causing clinically diagnosed TSC have been reported in these exons, raising the possibility that such variants would not cause TSC. We present truncating and in-frame variants in exons 25 and 31 in three individuals unlikely to fulfil TSC diagnostic criteria and examine the importance of these exons in TSC using different approaches. Amino acid conservation analysis suggests significantly less conservation in these exons compared with the majority of TSC2 exons, and TSC2 expression data demonstrates that the majority of TSC2 transcripts lack exons 25 and/or 31 in many human adult tissues. In vitro assay of both exons shows that neither exon is essential for TSC complex function. Our evidence suggests that variants in TSC2 exons 25 or 31 are very unlikely to cause classical TSC, although a role for these exons in tissue/stage specific development cannot be excluded.


Assuntos
Éxons , Estudos de Associação Genética , Mutação , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Adulto , Alelos , Processamento Alternativo , Criança , Pré-Escolar , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica , Variação Genética , Humanos , Fenótipo , Proteína 2 do Complexo Esclerose Tuberosa
19.
Sci Rep ; 5: 14534, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412398

RESUMO

Tuberous sclerosis complex (TSC) is caused by inactivating mutations in either TSC1 or TSC2 and is characterized by uncontrolled mTORC1 activation. Drugs that reduce mTOR activity are only partially successful in the treatment of TSC, suggesting that mTOR-independent pathways play a role in disease development. Here, kinome profiles of wild-type and Tsc2(-/-) mouse embryonic fibroblasts (MEFs) were generated, revealing a prominent role for PAK2 in signal transduction downstream of TSC1/2. Further investigation showed that the effect of the TSC1/2 complex on PAK2 is mediated through RHEB, but is independent of mTOR and p21RAC. We also demonstrated that PAK2 over-activation is likely responsible for the migratory and cell cycle abnormalities observed in Tsc2(-/-) MEFs. Finally, we detected high levels of PAK2 activation in giant cells in the brains of TSC patients. These results show that PAK2 is a direct effector of TSC1-TSC2-RHEB signaling and a new target for rational drug therapy in TSC.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Camundongos , Terapia de Alvo Molecular , Fosforilação , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas rac de Ligação ao GTP/metabolismo
20.
BMC Med Genet ; 16: 10, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25927202

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in TSC1 and TSC2. Conventional DNA diagnostic screens identify a TSC1 or TSC2 mutation in 75 - 90% of individuals categorised with definite TSC. The remaining individuals either have a mutation that is undetectable using conventional methods, or possibly a mutation in another as yet unidentified gene. METHODS: Here we apply a targeted Next Generation Sequencing (NGS) approach to screen the complete TSC1 and TSC2 genomic loci in 7 individuals fulfilling the clinical diagnostic criteria for definite TSC in whom no TSC1 or TSC2 mutations were identified using conventional screening methods. RESULTS: We identified and confirmed pathogenic mutations in 3 individuals. In the remaining individuals we identified variants of uncertain clinical significance. The identified variants included mosaic changes, changes located deep in intronic sequences and changes affecting promoter regions that would not have been identified using exon-only based analyses. CONCLUSIONS: Targeted NGS of the TSC1 and TSC2 loci is a suitable method to increase the yield of mutations identified in the TSC patient population.


Assuntos
Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Proteínas Supressoras de Tumor/genética , Adolescente , Criança , Loci Gênicos/genética , Genômica , Humanos , Pessoa de Meia-Idade , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA