Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594676

RESUMO

BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.


Assuntos
Pneumopatias , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Lipossomos/metabolismo , Vimentina/metabolismo , Lipopolissacarídeos/farmacologia , Ácido Clodrônico/farmacologia , Ácido Clodrônico/metabolismo , Linfócitos T CD8-Positivos , Pulmão , Macrófagos/metabolismo , Pneumopatias/metabolismo , Exposição Ambiental , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
2.
Int Immunopharmacol ; 127: 111330, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38086271

RESUMO

OBJECTIVES: Interstitial lung disease (ILD) is associated with significant mortality in rheumatoid arthritis (RA) patients with key cellular players remaining largely unknown. This study aimed to characterize inflammatory and myeloid derived suppressor cell (MDSC) subpopulations in RA-ILD as compared to RA, idiopathic pulmonary fibrosis (IPF) without autoimmunity, and controls. METHODS: Peripheral blood was collected from patients with RA, RA-ILD, IPF, and controls (N = 60, 15/cohort). Myeloid cell subpopulations were identified phenotypically by flow cytometry using the following markers:CD45,CD3,CD19,CD56,CD11b,HLA-DR,CD14,CD16,CD15,CD125,CD33. Functionality of subsets were identified with intracellular arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) expression. RESULTS: There was increased intermediate (CD14++CD16+) and nonclassical (CD14+/-CD16++) and decreased classical (CD14++CD16-) monocytes in RA, RA-ILD, and IPF vs. control. Intermediate monocytes were higher and classical monocytes were lower in RA-ILD vs. RA but not IPF. Monocytic (m)MDSCs were higher in RA-ILD vs. control and RA but not IPF. Granulocytic (g)MDSCs did not significantly differ. In contrast, neutrophils were increased in IPF and RA-ILD patients with elevated expression of Arg-1 sharing similar dimensional clustering pattern. Eosinophils were increased in RA-ILD vs. controls, RA and IPF. Across cohorts, iNOS was decreased in intermediate/nonclassical monocytes but increased in mMDSCs vs. classical monocytes. In RA-ILD, iNOS positive mMDSCs were increased versus classic monocytes. CONCLUSIONS: Myeloid cell subpopulations are significantly modulated in RA-ILD patients with expansion of CD16+ monocytes, mMDSCs, and neutrophils, a phenotypic profile more aligned with IPF than other RA patients. Eosinophil expansion was unique to RA-ILD, potentially facilitating disease pathogenesis and providing a future therapeutic target.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Monócitos , Células Mieloides
3.
Sci Rep ; 12(1): 17338, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243830

RESUMO

Although lung diseases typically result from long-term exposures, even a robust, one-time exposure can result in long-lasting consequences. Endotoxin is a ubiquitous environmental/occupational inflammatory agent often used to model airway inflammation. Using a murine model, the return to lung homeostasis following high dose inhalant lipopolysaccharide (LPS, 10-100 µg) exposure were delineated over 2 weeks. LPS-induced rapid weight loss, release of proinflammatory mediators, and inflammatory cell influx with prolonged persistence of activated macrophages CD11c+CD11b+ and recruited/transitioning CD11cintCD11b+ monocyte-macrophages out to 2 weeks. Next, lung-delivered recombinant (r) interleukin (IL)-10 was intratracheally administered for 3 doses initiated 5 h following LPS (10 µg) exposure for 2 days. IL-10 therapy reduced LPS-induced weight loss and increased blood glucose levels. Whereas there was no difference in LPS-induced bronchoalveolar lavage airway fluid cellular influx, total lung cell infiltrates were reduced (37%) with rIL-10 treatment. Post-LPS exposure treatment with rIL-10 strikingly reduced lavage fluid and lung homogenate levels of tumor necrosis factor-α (88% and 93% reduction, respectively), IL-6 (98% and 94% reduction), CXCL1 (66% and 75% reduction), and CXCL2 (47% and 67% reduction). LPS-induced recruited monocyte-macrophages (CD11cintCD11b+) were reduced (68%) with rIL-10. Correspondingly, LPS-induced lung tissue CCR2+ inflammatory monocyte-macrophage were reduced with rIL-10. There were also reductions in LPS-induced lung neutrophils, lymphocyte subpopulations, collagen content, and vimentin expression. These findings support the importance of studying resolution processes for the development of treatment after unintended environmental/occupational biohazard exposures. Short-term, lung-delivered rIL-10 favorably hastened inflammatory recovery processes following acute, high dose inhalant LPS exposure.


Assuntos
Interleucina-10 , Pneumonia , Animais , Glicemia/metabolismo , Líquido da Lavagem Broncoalveolar , Antígeno CD11c/metabolismo , Endotoxinas/metabolismo , Substâncias Perigosas/efeitos adversos , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Camundongos , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo , Redução de Peso
4.
Respir Res ; 23(1): 247, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114505

RESUMO

BACKGROUND: The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects, and low CC16 serum levels have been associated with both risk and progression of COPD, yet the interaction between smoking and CC16 on lung function outcomes remains unknown. METHODS: Utilizing cross-sectional data on United States veterans, CC16 serum concentrations were measured by ELISA and log transformed for analyses. Spirometry was conducted and COPD status was defined by post-bronchodilator FEV1/FVC ratio < 0.7. Smoking measures were self-reported on questionnaire. Multivariable logistic and linear regression were employed to examine associations between CC16 levels and COPD, and lung function with adjustment for covariates. Unadjusted Pearson correlations described relationships between CC16 level and lung function measures, pack-years smoked, and years since smoking cessation. RESULTS: The study population (N = 351) was mostly male, white, with an average age over 60 years. An interaction between CC16 and smoking status on FEV1/FVC ratio was demonstrated among subjects with COPD (N = 245, p = 0.01). There was a positive correlation among former smokers and negative correlation among current or never smokers with COPD. Among former smokers with COPD, CC16 levels were also positively correlated with years since smoking cessation, and inversely related with pack-years smoked. Increasing CC16 levels were associated with lower odds of COPD (ORadj = 0.36, 95% CI 0.22-0.57, Padj < 0.0001). CONCLUSIONS: Smoking status is an important effect modifier of CC16 relationships with lung function. Increasing serum CC16 corresponded to increases in FEV1/FVC ratio in former smokers with COPD versus opposite relationships in current or never smokers. Additional longitudinal studies may be warranted to assess relationship of CC16 with smoking cessation on lung function among subjects with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Uteroglobina , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Broncodilatadores/metabolismo , Estudos Transversais , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça , Fumar/efeitos adversos , Fumar/epidemiologia , Nicotiana , Uteroglobina/metabolismo
6.
PLoS One ; 16(2): e0240707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577605

RESUMO

Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet the mechanisms linking lung disease and RA remain unknown. Using an established murine model of RA-associated lung disease combining collagen-induced arthritis (CIA) with organic dust extract (ODE)-induced airway inflammation, differences among lung immune cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung myeloid-derived immune cell populations including macrophages, monocytes/macrophages, monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clusters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory, resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and recruited/differentiating macrophages were predominant with arthritis induction (CIA and CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3, Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1 and Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoimmune-, and complement-related genes might contribute towards pro-fibrotic inflammatory lung responses following airborne biohazard exposures in setting of autoimmune arthritis and could be predictive and/or targeted to reduce disease burden.


Assuntos
Artrite Reumatoide/fisiopatologia , Poeira/imunologia , Pulmão/imunologia , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/complicações , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/métodos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/metabolismo , Células Supressoras Mieloides/metabolismo , Neutrófilos/metabolismo
7.
Respir Res ; 21(1): 97, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321514

RESUMO

BACKGROUND: Environmental organic dust exposures enriched in Toll-like receptor (TLR) agonists can reduce allergic asthma development but are associated with occupational asthma and chronic bronchitis. The TLR adaptor protein myeloid differentiation factor88 (MyD88) is fundamental in regulating acute inflammatory responses to organic dust extract (ODE), yet its role in repetitive exposures is unknown and could inform future strategies. METHODS: Wild-type (WT) and MyD88 knockout (KO) mice were exposed intranasally to ODE or saline daily for 3 weeks (repetitive exposure). Repetitively exposed animals were also subsequently rested with no treatments for 4 weeks followed by single rechallenge with saline/ODE. RESULTS: Repetitive ODE exposure induced neutrophil influx and release of pro-inflammatory cytokines and chemokines were profoundly reduced in MyD88 KO mice. In comparison, ODE-induced cellular aggregates, B cells, mast cell infiltrates and serum IgE levels remained elevated in KO mice and mucous cell metaplasia was increased. Expression of ODE-induced tight junction protein(s) was also MyD88-dependent. Following recovery and then rechallenge with ODE, inflammatory mediators, but not neutrophil influx, was reduced in WT mice pretreated with ODE coincident with increased expression of IL-33 and IL-10, suggesting an adaptation response. Repetitively exposed MyD88 KO mice lacked inflammatory responsiveness upon ODE rechallenge. CONCLUSIONS: MyD88 is essential in mediating the classic airway inflammatory response to repetitive ODE, but targeting MyD88 does not reduce mucous cell metaplasia, lymphocyte influx, or IgE responsiveness. TLR-enriched dust exposures induce a prolonged adaptation response that is largely MyD88-independent. These findings demonstrate the complex role of MyD88-dependent signaling during acute vs. chronic organic dust exposures.


Assuntos
Adaptação Fisiológica/fisiologia , Poeira , Exposição Ambiental/efeitos adversos , Exposição por Inalação/efeitos adversos , Pneumopatias/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Feminino , Pneumopatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L180-L191, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693392

RESUMO

Exposure to agricultural bioaerosols can lead to chronic inflammatory lung diseases. Amphiregulin (AREG) can promote the lung repair process but can also lead to fibrotic remodeling. The objective of this study was to determine the role of AREG in altering recovery from environmental dust exposure in a murine in vivo model and in vitro using cultured human and murine lung fibroblasts. C57BL/6 mice were intranasally exposed to swine confinement facility dust extract (DE) or saline daily for 1 wk or allowed to recover for 3-7 days while being treated with an AREG-neutralizing antibody or recombinant AREG. Treatment with the anti-AREG antibody prevented resolution of DE exposure-induced airway influx of total cells, neutrophils, and macrophages and increased levels of TNF-α, IL-6, and CXCL1. Neutrophils and activated macrophages (CD11c+CD11bhi) persisted after recovery in lung tissues of anti-AREG-treated mice. In murine and human lung fibroblasts, DE induced the release of AREG and inflammatory cytokines. Fibroblast recellularization of primary human lung mesenchymal matrix scaffolds and wound closure was inhibited by DE and enhanced with recombinant AREG alone. AREG treatment rescued the DE-induced inhibitory fibroblast effects. AREG intranasal treatment for 3 days during recovery phase reduced repetitive DE-induced airway inflammatory cell influx and cytokine release. Collectively, these studies demonstrate that inhibition of AREG reduced, whereas AREG supplementation promoted, the airway inflammatory recovery response following environmental bioaerosol exposure, and AREG enhanced fibroblast function, suggesting that AREG could be targeted in agricultural workers repetitively exposed to organic dust environments to potentially prevent and/or reduce disease.


Assuntos
Anfirregulina/farmacologia , Poeira/prevenção & controle , Exposição Ambiental/efeitos adversos , Fibroblastos/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Agricultura/métodos , Animais , Células Cultivadas , Quimiocina CXCL1/metabolismo , Citocinas/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L334-L347, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358438

RESUMO

Inflammation from airborne microbes can overwhelm compensatory mucociliary clearance mechanisms, leading to mucous cell metaplasia. Toll-like receptor (TLR) activation via myeloid differentiation factor 88 (MyD88) signaling is central to pathogen responses. We have previously shown that agricultural organic dust extract (ODE), with abundant microbial component diversity, activates TLR-induced airway inflammation. With the use of an established model, C57BL/6J wild-type (WT) and global MyD88 knockout (KO) mice were treated with intranasal inhalation of ODE or saline, daily for 1 wk. ODE primarily increased mucin (Muc)5ac levels relative to Muc5b. Compared with ODE-challenged WT mice, ODE-challenged, MyD88-deficient mice demonstrated significantly increased Muc5ac immunostaining, protein levels by immunoblot, and expression by quantitative PCR. The enhanced Muc5ac levels in MyD88-deficient mice were not explained by differences in the differentiation program of airway secretory cells in naïve mice. Increased Muc5ac levels in MyD88-deficient mice were also not explained by augmented inflammation, IL-17A, or neutrophil elastase levels. Furthermore, the enhanced airway mucins in the MyD88-deficient mice were not due to defective secretion, as the mucin secretory capacity of MyD88-KO mice remained intact. Finally, ODE-induced Muc5ac levels were enhanced in MyD88-deficient airway epithelial cells in vitro. In conclusion, MyD88 deficiency enhances airway mucous cell metaplasia under environments with high TLR activation.


Assuntos
Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Exposição por Inalação , Camundongos Endogâmicos C57BL , Mucina-5AC/genética
10.
J Immunotoxicol ; 15(1): 73-81, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29648480

RESUMO

Skeletal health consequences associated with inflammatory diseases of the airways significantly contribute to morbidity. Sex differences have been described independently for lung and bone diseases. Repetitive inhalant exposure to lipopolysaccharide (LPS) induces bone loss and deterioration in male mice, but comparison effects in females are unknown. Using an intranasal inhalation exposure model, 8-week-old C57BL/6 male and female mice were treated daily with LPS (100 ng) or saline for 3 weeks. Bronchoalveolar lavage fluids, lung tissues, tibias, bone marrow cells, and blood were collected. LPS-induced airway neutrophil influx, interleukin (IL)-6 and neutrophil chemoattractant levels, and bronchiolar inflammation were exaggerated in male animals as compared to female mice. Trabecular bone micro-CT imaging and analysis of the proximal tibia were conducted. Inhalant LPS exposures lead to deterioration of bone quality only in male mice (not females) marked by decreased bone mineral density, bone volume/tissue volume ratio, trabecular thickness and number, and increased bone surface-to-bone volume ratio. Serum pentraxin-2 levels were modulated by sex differences and LPS exposure. In proof-of-concept studies, ovarectomized female mice demonstrated LPS-induced bone deterioration, and estradiol supplementation of ovarectomized female mice and control male mice protected against LPS-induced bone deterioration findings. Collectively, sex-specific differences exist in LPS-induced airway inflammatory consequences with significant differences found in bone quantity and quality parameters. Male mice demonstrated susceptibility to bone loss and female animals were protected, which was modulated by estrogen. Therefore, sex differences influence the biologic response in the lung-bone inflammatory axis in response to inhalant LPS exposures.


Assuntos
Reabsorção Óssea/imunologia , Osso e Ossos/imunologia , Terapia de Reposição Hormonal , Inflamação/imunologia , Pulmão/imunologia , Animais , Reabsorção Óssea/tratamento farmacológico , Estradiol/uso terapêutico , Feminino , Inflamação/tratamento farmacológico , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Sexo , Tomografia Computadorizada por Raios X
11.
PLoS One ; 12(9): e0184039, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880936

RESUMO

Alterations in microRNA (miRNA) expression may contribute to COPD pathogenesis. In COPD, lung fibroblast repair functions are altered in multiple ways, including extracellular mediator release. Our prior study revealed miR-503 expression is decreased in COPD lung fibroblasts, although the exact role played by miR-503 is undetermined. The current study examined a role of miR-503 in cytokine, growth factor and fibronectin production by lung fibroblasts from patients with and without COPD. Primary adult lung fibroblasts were isolated from patients with or without COPD. MiR-503 expression and interleukin (IL)-6, -8, PGE2, HGF, KGF, VEGF and fibronectin release were examined with or without inflammatory cytokines, IL-1ß and tumor necrosis factor (TNF)-α. MiR-503 expression was decreased in COPD lung fibroblasts. The expression of miR-503 was positively correlated with %FVC, %FEV1, and %DLco as well as IL-6, -8, PGE2, HGF, KGF, and VEGF in the absence or presence of IL-1ß/TNF-α. In addition, IL-8 and VEGF release from COPD lung fibroblasts were increased compared to those from control. Exogenous miR-503 inhibited VEGF release from primary adult and fetal lung fibroblasts but not IL-8 release. As expected, COPD fibroblasts proliferated more slowly than control fibroblasts. MiR-503 did not affect proliferation of either control or COPD lung fibroblasts. MiR-503 inhibition of VEGF protein production and mRNA was mediated by direct binding to the 3' untranslated region of VEGF mRNA. Endogenous miR-503 was differently regulated by exogenous stimulants associated with COPD pathogenesis, including IL-1ß/TNF-α, TGF-ß1 and PGE2. Endogenous miR-503 inhibition augmented VEGF release by IL-1ß/TNF-α and TGF-ß1 but not by PGE2, demonstrating selectivity of miR-503 regulation of VEGF. In conclusions, reduced miR-503 augments VEGF release from lung fibroblasts from patients with COPD. Since VEGF contributes to disturbed vasculature in COPD, altered miR-503 production might play a role in modulating fibroblast-mediated vascular homeostasis in COPD.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Pulmão/patologia , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Regiões 3' não Traduzidas/genética , Adulto , Sequência de Bases , Estudos de Casos e Controles , Células Cultivadas , Doença Crônica , Dinoprostona/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
12.
In Vitro Cell Dev Biol Anim ; 51(4): 390-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25552310

RESUMO

In vitro cell cultures, including lung fibroblasts, have been used to identify microRNAs (miRNAs) associated with chronic obstructive pulmonary disease (COPD) pathogenesis. However, culture conditions may affect miRNA expression. We examined whether miRNA expression in primary adult lung fibroblasts varies with cell density or passage in vitro and whether culture conditions confound the identification of altered miRNA expression in COPD lung fibroblasts. Primary adult control and COPD lung fibroblasts were cultured until passage 3 or 8, after which cells were further cultured for 3 or 7 d (low vs. high density). Then, cells at low density were cultured with serum-free media, and those at high density were cultured with serum-free media in the absence or presence of interleukin-1ß (IL-1ß) and tumor necrosis factor alpha (TNF-α) for 24 h. RNA was extracted to perform miRNA microarray from which 1.25-fold differential expression and 10% false discovery rate were applied to identify "invariant" and "variant" miRNA for the various culture conditions. Of the 2226 miRNAs evaluated, 39.0% for cell density, 40.7% for cell passage, and 29.4% for both conditions were identified as "invariant" miRNAs. Furthermore, 38.1% of the evaluated miRNAs were "invariant" for cell passage with IL-1ß and TNF-α. Differentially expressed miRNAs between control and COPD lung fibroblasts were identified with and without IL-1ß and TNF-α, and of these, 32 out of the 34 top-ranked miRNAs exceeded the differences due to culture conditions. Thus, culture conditions may affect miRNA expression of adult human lung fibroblasts. Nevertheless, in vitro cultures can be used to assess differential miRNA expression in COPD lung fibroblasts.


Assuntos
Fibroblastos/citologia , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Estudos de Casos e Controles , Contagem de Células , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Interleucina-1beta/farmacologia , Pulmão/citologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-25460827

RESUMO

Epithelial-mesenchymal transition (EMT) is critical for embryonic development, and this process is recapitulated in adults during wound healing, tissue regeneration, fibrosis and cancer progression. Cell migration is believed to play a key role in both normal wound repair and in abnormal tissue remodeling. Prostaglandin E2 (PGE2) inhibits fibroblast chemotaxis, but stimulates chemotaxis in airway epithelial cells. The current study was designed to explore the role of PGE2 and its four receptors on airway epithelial cell migration following EMT using both the Boyden blindwell chamber chemotaxis assay and the wound closure assay. EMT in human bronchial epithelial cells (HBECs) was induced by TGF-ß1 and a mixture of cytokines (IL-1ß, TNF-α, and IFN-γ). PGE2 and selective agonists for all four EP receptors stimulated chemotaxis and wound closure in HBECs. Following EMT, the EP1 and EP3 agonists were without effect, while the EP2 and EP4 agonists inhibited chemotaxis as did PGE2. The effects of the EP2 and EP4 receptors on HBEC and EMT cell migration were further confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE2 switches from a stimulator to an inhibitor of cell migration following EMT of airway epithelial cells and that this inhibition is mediated by an altered effect of EP2 and EP4 signaling and an apparent loss of the stimulatory effects of EP1 and EP3. Change in the PGE2 modulation of chemotaxis may play a role in repair following injury.


Assuntos
Movimento Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/citologia , Humanos
14.
Am J Respir Cell Mol Biol ; 49(4): 571-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23656623

RESUMO

Lung fibroblasts are believed to be a major source of vascular endothelial growth factor (VEGF), which supports the survival of lung endothelial cells and modulates the maintenance of the pulmonary microvasculature. VEGF has been related to the pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). Prostaglandin E2 (PGE2) stimulates VEGF production from lung fibroblasts via the E-prostanoid (EP)-2 receptor. The EP2 signaling pathway uses cyclic adenosine monophosphate (cAMP) as a second messenger, and cAMP is degraded by phosphodiesterases (PDEs). This study investigates whether phosphodiesterase inhibition modulates the human lung fibroblast VEGF production induced by PGE2. Human fetal lung fibroblasts were cultured with PGE2 and PDE inhibitors. The PDE4 inhibitors roflumilast, roflumilast N-oxide, and rolipram with PGE2 increased VEGF release, as quantified in supernatant media by ELISA. In contrast, PDE3, PDE5, and PDE7 inhibitors did not affect VEGF release. Roflumilast increased VEGF release with either an EP2 or an EP4 agonist. Roflumilast augmented the cytosolic cAMP levels induced by PGE2 and VEGF release with other agents that use the cAMP signaling pathway. Roflumilast-augmented VEGF release was completely inhibited by a protein kinase A (PKA) inhibitor. Roflumilast with PGE2 increased VEGF mRNA levels, and the blockade of mRNA synthesis inhibited the augmented VEGF release. The stimulatory effect of roflumilast on VEGF release was replicated using primary healthy and COPD lung fibroblasts. These findings demonstrate that PDE4 inhibition can modulate human lung fibroblast VEGF release by PGE2 acting through the EP2 and EP4 receptor-cAMP/PKA signaling pathway. Through this action, PDE4 inhibitors such as roflumilast could contribute to the survival of lung endothelial cells.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Dinoprostona/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aminopiridinas/farmacologia , Benzamidas/farmacologia , Células Cultivadas , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclopropanos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/genética , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
15.
Toxicol Lett ; 220(2): 126-34, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23618901

RESUMO

Cigarette smoke is the major cause of chronic obstructive pulmonary disease (COPD), yet pathogenic mechanisms are not fully understood. Vascular endothelial growth factor (VEGF) is one of the major regulators of endothelial cell survival and is believed to play a role in the pathogenesis of COPD. Fibroblasts are a significant source of VEGF in the lungs; however the effect of cigarette smoke exposure on VEGF release by fibroblasts is not fully understood. We hypothesized that cigarette smoke-induced disturbed VEGF release by human lung fibroblasts is a potential pathogenic mechanism that could contribute to COPD. Cigarette smoke extract (CSE) was prepared by modification of the methods of Carp and Janoff (American Review of Respiratory Disease, 1978). Human fetal lung fibroblasts (HFL-1) were exposed to different concentrations of CSE and for different durations. VEGF release into the media was measured using ELISA. TGF-ß1 receptor (TßR1)/Smad3 as a potential pathway for CSE modulated VEGF release was also investigated using biochemical analyses and siRNA inhibition of Smad3 and siRNA and pharmacologic inhibition of TßR1. CSE induced VEGF release by HFL-1 in concentration and time dependent manner. This was confirmed in two additional types of primary human fetal lung fibroblasts. CSE induced Smad3 phosphorylation and nuclear translocation in HFL-1 cells. Silencing of Smad3 by siRNA not only eliminated the stimulatory effect of CSE on VEGF release but also inhibited baseline VEGF production. Suppression of TßR1 by the pharmacological inhibitor (SB431542) markedly reduced VEGF release by HFL-1 in response to CSE and this effect was confirmed by TßR1 siRNA. In contrast, nicotine inhibited VEGF release by HFL-1 in a dose and time dependent manner. Our findings indicate that CSE stimulates Smad3-mediated VEGF release by lung fibroblasts. Nicotine does not account for the CSE stimulation of VEGF in HFL-1. The ability of lung fibroblasts to produce VEGF may play a role in pathogenesis of cigarette smoke induced lung disease.


Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nicotiana/química , Proteína Smad3/metabolismo , Fumaça/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Pulmão/citologia , Pulmão/metabolismo , Nicotina/toxicidade , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
16.
Am J Respir Cell Mol Biol ; 46(2): 217-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22298530

RESUMO

Fibroblasts are the major mesenchymal cells present within the interstitium of the lung and are a major source of vascular endothelial growth factor (VEGF), which modulates the maintenance of pulmonary microvasculature. Prostaglandin E(2) (PGE(2)) acts on a set of E-prostanoid (EP) receptors that activate multiple signal transduction pathways leading to downstream responses. We investigated the modulation by PGE(2) of VEGF release by human lung fibroblasts. Human lung fibroblasts were cultured until reaching 90% confluence in tissue culture plates, after which the culture media were changed to serum-free Dulbecco's modified Eagle's medium, with or without PGE(2), and with specific agonists or antagonists for each EP receptor. After 2 days, culture media were assayed for VEGF by ELISA. The results demonstrated that PGE(2) and the EP2 agonist ONO-AE1-259-01 significantly stimulated the release of VEGF in a concentration-dependent manner. Agonists for other EP receptors did not stimulate the release of VEGF. The stimulatory effect of PGE(2) was blocked by the EP2 antagonist AH6809, but was not blocked by antagonists for other EP receptors. The protein kinase-A (PKA) inhibitor KT-5720 also blocked the stimulatory effect of PGE(2). The increased release of VEGF induced by PGE(2) was accompanied by a transient increase in the concentration of VEGF mRNA. These findings demonstrate that PGE(2) can modulate the release of VEGF by human lung fibroblasts through its actions in the EP2 receptor/PKA pathway. This activity may contribute to the maintenance of pulmonary microvasculature in the alveolar wall.


Assuntos
Dinoprostona/fisiologia , Pulmão/metabolismo , Receptores de Prostaglandina E Subtipo EP2/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA