Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(7): 4049-4063, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37017907

RESUMO

Protein phosphatase 2A (PP2A), the activity of which is dictated by the composition of its regulatory subunit, is strongly related to the progression of neurodegenerative disease. The potential role of PP2A on the phenotypic transition of microglial cells under obese conditions is poorly explored. An understanding of the role of PP2A and identification of regulatory subunits contributing to microglial phenotypic transitions in obese condition may serve as a therapeutic target for obesity-associated neurodegeneration. C57BL/6 mice were exposed to obese-associated vascular dementia conditions by performing unilateral common carotid artery occlusion on obese mice of microglial polarization and PP2A activity using flow cytometry, real-time PCR, western blotting, and immunoprecipitation enzymatic assay, followed identifications of PP2A regulatory subunits using LCMS and RT-PCR. Chronic HFD feeding significantly increased the populations of infiltrated macrophages, showing a high percentage of CD86+ in VaD mice, and the expression of pro-inflammatory cytokines, and we observed that PP2A modulates metabolic reprogramming of microglia by regulating OXPHOS/ECAR activity. Using Co-IP and LCMS, we identified the six specific regulatory subunits, namely PPP2R2A, PPP2R2D, PPP2R5B, PPP2R5C, PPP2R5D, and PPP2R5E, that are associated with microglial-activation during obesity-associated-VaD. Interestingly, pharmacological up-regulation of PP2A more significantly suppressed the expression of TNF-alpha than other pro-inflammatory-cytokines and increased the expression of Arginase-1, suggesting that PP2A modulates microglial-phenotypic transitions through TNF-α/Arg-1 axis. Our present findings demonstrate microglial polarization in HFD associated with VaD, and point towards a therapeutic target by providing specific PP2A regulatory-subunits implicated in microglial activation during obesity-related-vascular-dementia.


Assuntos
Demência Vascular , Doenças Neurodegenerativas , Camundongos , Animais , Proteína Fosfatase 2/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Demência Vascular/metabolismo , Doenças Neurodegenerativas/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
Int J Biol Macromol ; 191: 548-559, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34536476

RESUMO

The usefulness of sirolimus (SIR) in the treatment of diseases that involve retinal degeneration like age-related macular degeneration (AMD) has been well documented. However, the problem still remains probably owing to the peculiar environment of the eye and/or unfavourable physiochemical profile of SIR. In the present work, we aimed to fabricate sirolimus loaded PLGA nanoparticles (SIR-PLGA-NP) and chitosan decorated PLGA nanoparticles (SIR-CH-PLGA-NP) to be administered via non-invasive subconjunctival route. Both the nanoparticles were characterized in terms of size, zeta potential, DSC, FTIR and XRD analysis. Quality by Design (QbD) approach was employed during the preparation of nanoparticles and the presence of chitosan coating was confirmed through thermogravimetric analysis and contact angle studies. Cationic polymer modification showed sustained in-vitro SIR release and enhanced ex-vivo scleral permeation and penetration. Further, SIR-CH-PLGA-NP revealed enhanced cellular uptake and thus, reduced lipopolysaccharide (LPS)-induced free-radicals generation by RAW 264.7 cells. The prepared nanoparticles were devoid of residual solvent and were found to be safe in HET-CAM analysis, RBCs damage analysis and histopathology studies. Moreover, high anti-angiogenic potential was observed in SIR-CH-PLGA-NP compared with SIR-PLGA-NP in chorioallantoic membrane (CAM) test. Overall, the current work opens up an avenue for further investigation of CH-PLGA-NP as SIR nanocarrier in the treatment of AMD.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Quitosana/análogos & derivados , Degeneração Macular/tratamento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sirolimo/administração & dosagem , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Degeneração Macular/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Ratos , Ratos Wistar , Esclera/efeitos dos fármacos , Esclera/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico
3.
PLoS One ; 14(10): e0223070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622373

RESUMO

The present study evaluates the effect of flaxseed oil (FXO) supplementation on adipose tissue macrophages (ATM's), E and D series resolvin (Rv) levels and adipose tissue inflammation. Male C57BL/6J mice were divided into five groups (n = 5): lean group (given standard chow diet), HFD group given high fat diet (approx. 18 weeks) till they developed insulin resistance and 4, 8 or 16 mg/kg group (HFD group later orally supplemented with 4, 8 or 16 mg/kg body weight flaxseed oil) for 4 weeks.The present study showed that FXO supplementation led to enhanced DHA, EPA, RvE1-E2, RvD2, RvD5- D6, IL-4, IL-10 and arginase 1 levels in ATMs together with altered immune cell infiltration and reduced NF-κB expression. The FXO supplementation suppresses immune cell infiltration into adipose tissue and alters adipose tissue macrophage phenotype towards the anti-inflammatory state via enhancement of E and D series resolvins, arginase 1 expression and anti-inflammatory cytokines level (IL-4 and IL-10.) leading to amelioration of insulin resistance in flaxseed oil supplemented HFD mice.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/dietoterapia , Óleo de Semente do Linho/farmacologia , Obesidade/dietoterapia , Tecido Adiposo/efeitos dos fármacos , Animais , Arginase/metabolismo , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia
4.
Drug Deliv Transl Res ; 9(5): 879-890, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30887226

RESUMO

Direct nose-to-brain delivery of drugs and faster onset of action have made intra-nasal route a much sought-after alternative to conventional routes of drug delivery to the brain. Lamotrigine is used for the treatment and management of neuropathic pain, and in the present work, lamotrigine (LTG)-PLGA nanoparticles were developed for intra-nasal delivery. The LTG-PLGA nanoparticles were prepared using modified nanoprecipitation method via high-speed homogenization and ultra-sonication techniques. Entrapment efficiency (EE%) of developed LTG-PLGA-NPs was found to be 84.87 ± 1.2% with drug loading of 10.21 ± 0.89%. The particle size of developed nanoparticles was found to be 184.6 nm with PDI value of 0.082 and zeta potential of - 18.8 mV. Dissolution profiles were studied in PBS (pH 7.4), simulated nasal fluid, and simulated cerebrospinal fluid where almost complete release was observed within 5 h in CSF. In vitro, cytotoxicity was analyzed using MTT assay where dose-dependent cytotoxicity was observed for developed LTG-PLGA-NPs. In vitro cytokine analysis showed positive effects of LTG-PLGA-NPs as pro-inflammatory cytokine suppressors. Further, in vivo studies were performed for radiolabeled formulation and drug (99mTc-LTG-PLGA-NPs and 99mTc-LTG-aqueous) using Sprague Dawley rats where with the help of gamma scintigraphy studies, various routes of administration viz. oral, intra-nasal, and intra-venous were compared. Various pharmacokinetic parameters were evaluated using biodistribution studies to estimate the drug levels in blood and brain. For 99mTc-LTG-PLGA-NPs via intra-nasal route, drug targeting efficiency (DTE%) was found to be 129.81% and drug target organ transport (DTP%) to be 22.81% in brain with Cmax of 3.82%/g within Tmax 1.5 h. Thus, the developed PLGA nanoparticles for intra-nasal delivery provide a possible alternative for existing available drug formulation for neuropathic pain management.


Assuntos
Anticonvulsivantes/administração & dosagem , Encéfalo/metabolismo , Portadores de Fármacos/administração & dosagem , Lamotrigina/administração & dosagem , Nanopartículas/administração & dosagem , Mucosa Nasal/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Administração Intranasal , Animais , Anticonvulsivantes/farmacocinética , Linhagem Celular Tumoral , Citocinas/metabolismo , Portadores de Fármacos/farmacocinética , Lamotrigina/farmacocinética , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Células RAW 264.7 , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA