Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Health ; 74(10): 8-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22708201

RESUMO

On November 23, 2006, former Russian military intelligence officer Alexander Litvinenko died in a London hospital. Authorities determined he was deliberately poisoned with the radionuclide Polonium-210 (210Po). Police subsequently discovered that those involved in this crime had--apparently inadvertently--spread 210Po over many locations in London. The United Kingdom Health Protection Agency (HPA) contacted many persons who might have been exposed to 210Po and provided voluntary urine testing. Some of those identified as potentially exposed were U.S. citizens, whom the HPA requested that the Centers for Disease Control and Prevention (CDC) assist in contacting. CDC also provided health care professionals and state and local public health officials with guidance as to how they might respond should a Litvinenko-like incident occur in the U.S. This guidance has resulted in the identification of a number of lessons that can be useful to public health and medical authorities in planning for radiological incidents. Eight such lessons are discussed in this article.


Assuntos
Planejamento em Desastres/métodos , Homicídio , Polônio/intoxicação , Liberação Nociva de Radioativos , Radioisótopos/intoxicação , Terrorismo , Monitoramento Ambiental , História do Século XXI , Homicídio/história , Humanos , Disseminação de Informação , Cooperação Internacional , Polônio/análise , Polônio/história , Liberação Nociva de Radioativos/história , Radioisótopos/análise , Radioisótopos/história , Federação Russa , Terrorismo/história , Reino Unido , Estados Unidos
2.
South Med J ; 103(6): 541-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20710137

RESUMO

Primary care physicians may be unprepared to diagnose and treat rare, yet potentially fatal, illnesses such as acute radiation syndrome (ARS). ARS, also known as radiation sickness, is caused by exposure to a high dose of penetrating, ionizing radiation over a short period of time. The time to onset of ARS is dependent on the dose received, but even at the lowest doses capable of causing illness, this will occur within a matter of hours to days. This article describes the clinical manifestations of ARS, provides guidelines for assessing its severity, and makes recommendations for managing ARS victims.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/terapia , Transplante de Medula Óssea , Procedimentos Clínicos , Relação Dose-Resposta à Radiação , Humanos , Cuidados Paliativos , Pancitopenia/diagnóstico , Pancitopenia/etiologia , Prognóstico , Radiometria , Irradiação Corporal Total/efeitos adversos
5.
Radiology ; 254(3): 660-77, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20177084

RESUMO

UNLABELLED: There are several types of serious nuclear or radiologic emergencies that would require a specialized medical response. Four scenarios of great public health, economic, and psychologic impact are the detonation of a nuclear weapon, the meltdown of a nuclear reactor, the explosion of a large radiologic dispersal device ("dirty bomb"), or the surreptitious placement of a radiation exposure device in a public area of high population density. With any of these, medical facilities that remain functional may have to deal with large numbers of ill, wounded, and probably contaminated people. Special care and/or handling will be needed for those with trauma, blast injuries, or thermal burns as well as significant radiation exposures or contamination. In addition, radiologists, nuclear medicine specialists, and radiation oncologists will be called on to perform a number of diverse and critically important tasks, including advising political and public health leaders, interfacing with the media, managing essential resources, and, of course, providing medical care. This article describes the medical responses needed following a radiologic or nuclear incident, including the symptoms of and specific treatments for acute radiation syndrome and other early health effects. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.09090330/-/DC1.


Assuntos
Planejamento em Desastres , Exposição Ocupacional/efeitos adversos , Papel do Médico , Lesões por Radiação/prevenção & controle , Liberação Nociva de Radioativos , Gestão da Segurança/métodos , Descontaminação , Guias como Assunto , Física Médica , Humanos , Guerra Nuclear , Armas Nucleares , Saúde Pública , Doses de Radiação , Monitoramento de Radiação , Proteção Radiológica/métodos , Terrorismo
6.
Health Phys ; 97(2): 145-56, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19590274

RESUMO

There are numerous software tools available for field deployment, reach-back, training and planning use in the event of a radiological or nuclear terrorist event. Specialized software tools used by CBRNe responders can increase information available and the speed and accuracy of the response, thereby ensuring that radiation doses to responders, receivers, and the general public are kept as low as reasonably achievable. Software designed to provide health care providers with assistance in selecting appropriate countermeasures or therapeutic interventions in a timely fashion can improve the potential for positive patient outcome. This paper reviews various software applications of relevance to radiological and nuclear events that are currently in use by first responders, emergency planners, medical receivers, and criminal investigators.


Assuntos
Planejamento em Desastres , Pessoal de Saúde , Liberação Nociva de Radioativos/prevenção & controle , Medição de Risco , Gestão da Segurança/métodos , Software , Auxiliares de Emergência , Humanos
7.
Mutat Res ; 603(1): 1-14, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16412685

RESUMO

1-bromopropane (1-BP; n-propyl bromide) (CAS No. 106-94-5) is an alternative to ozone-depleting chlorofluorocarbons that has a variety of potential applications as a degreasing agent for metals and electronics, and as a solvent vehicle for spray adhesives. Its isomer, 2-brompropane (2-BP; isopropyl bromide) (CAS No. 75-26-3) impairs antioxidant cellular defenses, enhances lipid peroxidation, and causes DNA damage in vitro. The present study had two aims. The first was to assess DNA damage in human leukocytes exposed in vitro to 1- or 2-BP. DNA damage was also assessed in peripheral leukocytes from workers with occupational exposure to 1-BP. In the latter assessment, start-of- and end-of-work week blood and urine samples were collected from 41 and 22 workers at two facilities where 1-BP was used as a solvent for spray adhesives in foam cushion fabrication. Exposure to 1-BP was assessed from personal-breathing zone samples collected for 1-3 days up to 8h per day for calculation of 8h time weighted average (TWA) 1-BP concentrations. Bromide (Br) was measured in blood and urine as a biomarker of exposure. Overall, 1-BP TWA concentrations ranged from 0.2 to 271 parts per million (ppm) at facility A, and from 4 to 27 ppm at facility B. The highest exposures were to workers classified as sprayers. 1-BP TWA concentrations were statistically significantly correlated with blood and urine Br concentrations. The comet assay was used to estimate DNA damage. In vitro, 1- or 2-BP induced a statistically significant increase in DNA damage at 1mM. In 1-BP exposed workers, start-of- and end-of-workweek comet endpoints were stratified based on job classification. There were no significant differences in DNA damage in leukocytes between workers classified as sprayers (high 1-BP exposure) and those classified as non-sprayers (low 1-BP exposure). At the facility with the high exposures, comparison of end-of-week values with start-of-week values using paired analysis revealed non-sprayers had significantly increased comet tail moments, and sprayers had significantly increased comet tail moment dispersion coefficients. A multivariate analysis included combining the data sets from both facilities, log transformation of 1-BP exposure indices, and the use of multiple linear regression models for each combination of DNA damage and exposure indices including exposure quartiles. The covariates were gender, age, smoking status, facility, and glutathione S-transferase M1 and T1 (GSTM1, GSTT1) polymorphisms. In the regression models, start-of-week comet tail moment in leukocytes was significantly associated with serum Br quartiles. End-of-week comet tail moment was significantly associated with 1-BP TWA quartiles, and serum Br quartiles. Gender, facility, and GSTM1 had a significant effect in one or more models. Additional associations were not identified from assessment of dispersion coefficients. In vitro and in vivo results provide limited evidence that 1-BP exposure may pose a small risk for increasing DNA damage.


Assuntos
Dano ao DNA , Exposição Ocupacional , Adulto , Ensaio Cometa , Feminino , Glutationa Transferase/genética , Humanos , Hidrocarbonetos Bromados/efeitos adversos , Descrição de Cargo , Leucócitos , Masculino , Polimorfismo Genético , Fatores de Risco , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA