Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurodev Disord ; 14(1): 15, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232382

RESUMO

INTRODUCTION: Neurofibromatosis type 1 (NF1) is considered a model of neurodevelopmental disorder because of the high frequency of learning deficits, especially developmental coordination disorder. In neurodevelopmental disorder, Nicolson and Fawcett formulated the hypothesis of an impaired procedural learning system that has its origins in cortico-subcortical circuits. Our aim was to investigate the relationship between cortico-striatal connectivity and procedural perceptual-motor learning performance and motor skills in NF1 children. METHODS: Seventeen NF1 and 18 typically developing children aged between 8 and 12 years old participated in the study. All were right-handed and did not present intellectual or attention deficits. In all children, procedural perceptual-motor learning was assessed using a bimanual visuo-spatial serial reaction time task (SRTT) and motor skills using the Movement Assessment Battery for Children (M-ABC). All participants underwent a resting-state functional MRI session. We used a seed-based approach to explore cortico-striatal connectivity in somatomotor and frontoparietal networks. A comparison between the groups' striato-cortical connectivity and correlations between connectivity and learning (SRTT) and motor skills (M-ABC) were performed. RESULTS: At the behavioral level, SRTT scores are not significantly different in NF1 children compared to controls. However, M-ABC scores are significantly impaired within 9 patients (scores below the 15th percentile). At the cerebral level, NF1 children present a higher connectivity in the cortico-striatal regions mapping onto the right angular gyrus compared to controls. We found that the higher the connectivity values between these regions, differentiating NF1 and controls, the lower the M-ABC scores in the whole sample. No correlation was found for the SRTT scores. CONCLUSION: NF1 children present atypical hyperconnectivity in cortico-striatal connections. The relationship with motor skills could suggest a sensorimotor dysfunction already found in children with developmental coordination disorder. These abnormalities are not linked to procedural perceptual-motor learning assessed by SRTT.


Assuntos
Destreza Motora , Neurofibromatose 1 , Criança , Corpo Estriado , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Neurofibromatose 1/complicações
2.
Eur J Paediatr Neurol ; 28: 89-100, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32893091

RESUMO

INTRODUCTION: NF1 children have cognitive disorders, especially in executive functions, visuospatial, and language domains, the pathophysiological mechanisms of which are still poorly understood. MATERIALS AND METHODS: A correlation study was performed from neuropsychological assessments and brain MRIs of 38 NF1 patients and 42 controls, all right-handed, aged 8-12 years and matched in age and gender. The most discriminating neuropsychological tests were selected to assess their visuospatial, metaphonological and visuospatial working memory abilities. The MRI analyses focused on the presence and location of Unidentified Bright Objects (UBOs) (1), volume analysis (2) and diffusion analysis (fractional anisotropy and mean diffusivity) (3) of the regions of interest including subcortical structures and posterior fossa, as well as shape analysis of subcortical structures (4). The level of attention, intelligence quotient, age and gender of the patients were taken into account in the statistical analysis. Then, we studied how diffusion and volumes parameters were associated with neuropsychological characteristics in NF1 children. RESULTS: NF1 children present different brain imaging characteristics compared to the control such as (1) UBOs in 68%, (2) enlarged total intracranial volume, involving all subcortical structures, especially thalamus, (3) increased MD and decreased FA in thalamus, corpus callosum and hippocampus. These alterations are diffuse, without shape involvement. In NF1 group, brain microstructure is all the more altered that volumes are enlarged. However, we fail to find a link between these brain characteristics and neurocognitive scores. CONCLUSION: While NF1 patients have obvious pathological brain characteristics, the neuronal substrates of their cognitive deficits are still not fully understood, perhaps due to complex and multiple pathophysiological mechanisms underlying this disorder, as suggested by the heterogeneity observed in our study. However, our results are compatible with an interpretation of NF1 as a diffuse white matter disease.


Assuntos
Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Encéfalo/patologia , Criança , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
3.
Hum Brain Mapp ; 40(12): 3508-3521, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077476

RESUMO

Neurofibromatosis Type 1 leads to brain anomalies involving both gray and white matter. The extent and granularity of these anomalies, together with their possible impact on brain activity, is still unknown. In this multicentric cross-sectional study we submitted a sample of 42 typically developing and 38 neurofibromatosis-1 children to a multimodal MRI assessment including T1, diffusion weighted and resting state functional sequences. We used a pipeline involving several features selection steps coupled with multivariate statistical analysis (supporting vector machine) to discriminate between the two groups while having interpretable models. We used MRI indexes measuring macro (gray matter volume) and microstructural (fractional anisotropy, mean diffusivity) characteristics of the brain, as well as indexes of brain activity (fractional amplitude of low frequency fluctuations) and connectivity (local and global correlation) at rest. We found that structural indexes could discriminate between the two groups, with the mean diffusivity leading to performance as high as the combination of all structural indexes combined (accuracy = 0.86), while functional indexes had worse performances. The MRI signature of NF1 brain pathology is a combination of gray and white matter abnormalities, as measured with gray matter volume, fractional anisotropy, and mean diffusivity.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neurofibromatose 1/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Criança , Diagnóstico Diferencial , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Análise Multivariada , Neurofibromatose 1/fisiopatologia , Substância Branca/fisiopatologia
4.
Front Neurol ; 10: 1373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993017

RESUMO

Neurofibromatosis type 1 (NF1) is one of the most frequent monogenetic disorders. It can be associated with cognitive dysfunctions in several domains such as executive functioning, language, visual perception, motor skills, social skills, memory and/or attention. Neuroimaging is becoming more and more important for a clearer understanding of the neural basis of these deficits. In recent years, several studies have used different imaging techniques to examine structural, morphological and functional alterations in NF1 disease. They have shown that NF1 patients have specific brain characteristics such as Unidentified Bright Objects (UBOs), macrocephaly, a higher volume of subcortical structures, microstructure integrity alterations, or connectivity alterations. In this review, which focuses on the studies published after the last 2 reviews of this topic (in 2010 and 2011), we report on recent structural, morphological and functional neuroimaging studies in NF1 subjects, with special focus on those that examine the neural basis of the NF1 cognitive phenotype. Although UBOs are one of the most obvious and visible elements in brain imaging, correlation studies have failed to establish a robust and reproducible link between major cognitive deficits in NF1 and their presence, number or localization. In the same vein, the results among structural studies are not consistent. Functional magnetic resonance imaging (fMRI) studies appear to be more sensitive, especially for understanding the executive function deficit that seems to be associated with a dysfunction in the right inferior frontal areas and the middle frontal areas. Similarly, fMRI studies have found that visuospatial deficits could be associated with a dysfunction in the visual cortex and especially in the magnocellular pathway involved in the processing of low spatial frequency and high temporal frequency. Connectivity studies have shown a reduction in anterior-posterior "long-range" connectivity and a deficit in deactivation in default mode network (DMN) during cognitive tasks. In conclusion, despite the contribution of new imaging techniques and despite relative advancement, the cognitive phenotype of NF1 patients is not totally understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA