Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(10): 1360-1371, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35467343

RESUMO

Over hundreds of millions of years, organisms have derived specific sets of traits in response to common selection pressures that serve as guideposts for optimal biological designs. A prime example is the evolution of toughened structures in disparate lineages within plants, invertebrates, and vertebrates. Extremely tough structures can function much like armor, battering rams, or reinforcements that enhance the ability of organisms to win competitions, find mates, acquire food, escape predation, and withstand high winds or turbulent flow. From an engineering perspective, biological solutions are intriguing because they must work in a multifunctional context. An organism rarely can be optimally designed for only one function or one environmental condition. Some of these natural systems have developed well-orchestrated strategies, exemplified in the biological tissues of numerous animal and plant species, to synthesize and construct materials from a limited selection of available starting materials. The resulting structures display multiscale architectures with incredible fidelity and often exhibit properties that are similar, and frequently superior, to mechanical properties exhibited by many engineered materials. These biological systems have accomplished this feat through the demonstrated ability to tune size, morphology, crystallinity, phase, and orientation of minerals under benign processing conditions (i.e., near-neutral pH, room temperature, etc.) by establishing controlled synthesis and hierarchical 3D assembly of nano- to microscaled building blocks. These systems utilize organic-inorganic interactions and carefully controlled microenvironments that enable kinetic control during the synthesis of inorganic structures. This controlled synthesis and assembly requires orchestration of mineral transport and nucleation. The underlying organic framework, often consisting of polysaccharides and polypeptides, in these composites is critical in the spatial and temporal regulation of these processes. In fact, the organic framework is used not only to provide transport networks for mineral precursors to nucleation sites but also to precisely guide the formation and phase development of minerals and significantly improve the mechanical performance of otherwise brittle materials.Over the past 15 years, we have focused on a few of these extreme performing organisms, (Wang , Adv. Funct. Mater. 2013, 23, 2908; Weaver , Science 2012, 336, 1275; Huang , Nat. Mater. 2020, 19, 1236; Rivera , Nature 2020, 586, 543) investigating not only their ultrastructural features and mechanical properties but in some cases, how these assembled structures are mineralized. In specific instances, comparative analyses of multiscale structures have pinpointed which design principles have arisen convergently; when more than one evolutionary path arrives at the same solution, we have a good indication that it is the best solution. This is required for survival under extreme conditions. Indeed, we have found that there are specific architectural features that provide an advantage toward survival by enabling the ability to feed effectively or to survive against predatory attacks. In this Account, we describe 3 specific design features, nanorods, helicoids, and nanoparticles, as well as the interfaces in fiber-reinforced biological composites. We not only highlight their roles in the specific organisms but also describe how controlled syntheses and hierarchical assembly using organic (i.e., often chitinous) scaffolds lead to these integrated macroscale structures. Beyond this, we provide insight into multifunctionality: how nature leverages these existing structures to potentially add an additional dimension toward their utility and describe their translation to biomimetic materials used for engineering applications.


Assuntos
Materiais Biomiméticos , Nanotubos , Animais , Materiais Biomiméticos/química , Quitina , Minerais , Peptídeos/química
2.
Biosci Biotechnol Biochem ; 85(5): 1275-1282, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710298

RESUMO

Streptomyces incarnatus NRRL8089 produces the antiviral, antifungal, antiprotozoal nucleoside antibiotic sinefungin. To enhance sinefungin production, multiple mutations were introduced to the rpoB gene encoding RNA polymerase (RNAP) ß-subunit at the target residues, D447, S453, H457, and R460. Sparse regression analysis using elastic-net lasso-ridge penalties on previously reported H457X mutations identified a numeric parameter set, which suggested that H457R/Y/F may cause production enhancement. H457R/R460C mutation successfully enhanced the sinefungin production by 3-fold, while other groups of mutations, such as D447G/R460C or D447G/H457Y, made moderate or even negative effects. To identify why the rif cluster residues have diverse effects on sinefungin production, an RNAP/DNA/mRNA complex model was constructed by homology modeling and molecular dynamics simulation. The 4 residues were located near the mRNA strand. Density functional theory-based calculation suggested that D447, H457, and R460 are in direct contact with ribonucleotide, and partially positive charges are induced by negatively charged chain of mRNA.


Assuntos
Adenosina/análogos & derivados , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Mutação , Streptomyces/genética , Adenosina/biossíntese , Adenosina/química , Substituição de Aminoácidos , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antiprotozoários/química , Antiprotozoários/metabolismo , Antivirais/química , Antivirais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/química , DNA/genética , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Teoria da Densidade Funcional , Regulação Bacteriana da Expressão Gênica , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Streptomyces/enzimologia
3.
J Mech Behav Biomed Mater ; 111: 103991, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32823075

RESUMO

Chitons are herbivorous invertebrates that use rows of ultrahard magnetite-based teeth connected to a flexible belt (radula) to rasp away algal deposits growing on and within rocky outcrops along coastlines around the world. Each tooth is attached to the radula by an organic structure (stylus) that provides mechanical support during feeding. However, the underlying structures within the stylus, and their subsequent function within the chiton have yet to be investigated. Here, we investigate the macrostructural architecture, the regional material and elemental distribution and subsequent nano-mechanical properties of the stylus from the Northern Pacific dwelling Cryptochiton stelleri. Using a combination of µ-CT imaging, optical and electron microscopy, as well as elemental analysis, we reveal that the stylus is a highly contoured tube, mainly composed of alpha-chitin fibers, with a complex density distribution. Nanoindentation reveals regiospecific and graded mechanical properties that can be correlated with both the elemental composition and material distribution. Finite element modeling shows that the unique macroscale architecture, material distribution and elemental gradients have been optimized to preserve the structural stability of this flexible, yet robust functionally-graded fiber-reinforced composite tube, providing effective function during rasping. Understanding these complex fiber-based structures offers promising blueprints for lightweight, multifunctional and integrated materials.


Assuntos
Poliplacóforos , Dente , Animais , Óxido Ferroso-Férrico , Microscopia Eletrônica
4.
J Antibiot (Tokyo) ; 72(12): 981-985, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31534199

RESUMO

Feline herpesvirus type 1 (FHV-1) causes a potentially fatal disease in cats. Through the use of virus inhibition and cytotoxicity assays, sinefungin, a nucleoside antibiotic, was assessed for its potential to inhibit the growth of FHV-1. Sinefungin inhibited in vitro growth of FHV-1 most significantly over other animal viruses, such as feline infectious peritonitis virus, equine herpesvirus, pseudorabies virus and feline calicivirus. Our results revealed that sinefungin specifically suppressed the replication of FHV-1 after its adsorption to the host feline kidney cells in a dose-dependent manner without obvious cytotoxicity to the host cells. This antibiotic can potentially offer a highly effective treatment for animals infected with FHV-1, providing alternative medication to currently available antiviral therapies.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Varicellovirus/efeitos dos fármacos , Adenosina/farmacologia , Adenosina/toxicidade , Animais , Antivirais/toxicidade , Calicivirus Felino/efeitos dos fármacos , Doenças do Gato/tratamento farmacológico , Gatos , Linhagem Celular , Coronavirus Felino/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/efeitos dos fármacos , Cavalos , Rim/citologia , Rim/virologia , Testes de Toxicidade
5.
Sci Rep ; 9(1): 856, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696920

RESUMO

Many species of chiton are known to deposit magnetite (Fe3O4) within the cusps of their heavily mineralized and ultrahard radular teeth. Recently, much attention has been paid to the ultrastructural design and superior mechanical properties of these radular teeth, providing a promising model for the development of novel abrasion resistant materials. Here, we constructed de novo assembled transcripts from the radular tissue of C. stelleri that were used for transcriptome and proteome analysis. Transcriptomic analysis revealed that the top 20 most highly expressed transcripts in the non-mineralized teeth region include the transcripts encoding ferritin, while those in the mineralized teeth region contain a high proportion of mitochondrial respiratory chain proteins. Proteomic analysis identified 22 proteins that were specifically expressed in the mineralized cusp. These specific proteins include a novel protein that we term radular teeth matrix protein1 (RTMP1), globins, peroxidasins, antioxidant enzymes and a ferroxidase protein. This study reports the first de novo transcriptome assembly from C. stelleri, providing a broad overview of radular teeth mineralization. This new transcriptomic resource and the proteomic profiles of mineralized cusp are valuable for further investigation of the molecular mechanisms of radular teeth mineralization in chitons.


Assuntos
Óxido Ferroso-Férrico/metabolismo , Poliplacóforos/fisiologia , Dente/fisiologia , Animais , Biomineralização , Calcificação Fisiológica , Ferritinas/genética , Ferritinas/metabolismo , Globinas/metabolismo , Proteômica , Calcificação de Dente , Transcriptoma
6.
Sci Rep ; 8(1): 6956, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725107

RESUMO

Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4+ T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.


Assuntos
Síndromes de Imunodeficiência/genética , Síndrome de Job/genética , Linfopenia/genética , Mutação , TYK2 Quinase/deficiência , Adolescente , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/isolamento & purificação , Heterozigoto , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/patologia , Síndrome de Job/complicações , Síndrome de Job/patologia , Linfoma de Células B/complicações , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfopenia/complicações , Linfopenia/patologia , Masculino , Doenças da Imunodeficiência Primária , Irmãos , Linfócitos T/patologia , TYK2 Quinase/genética
7.
J Biochem ; 161(4): 389-398, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003434

RESUMO

l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Dióxido de Carbono/metabolismo , Carboxiliases/classificação , Carboxiliases/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metionina/metabolismo , Peso Molecular , Filogenia , Propilaminas/metabolismo , Multimerização Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Espectrofotometria , Streptomyces/genética , Especificidade por Substrato , Temperatura
8.
Biosci Biotechnol Biochem ; 80(10): 1970-2, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27405844

RESUMO

Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 µM and 0.352 min(-1), respectively.


Assuntos
Ensaios Enzimáticos/métodos , Fosfotransferases/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/metabolismo , Thermus thermophilus/enzimologia , Monofosfato de Adenosina/metabolismo , Humanos
9.
Sci Rep ; 6: 19742, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818780

RESUMO

Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni-Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions.


Assuntos
Proteínas de Bactérias/química , Simulação por Computador , Evolução Molecular , Hidrogenase/química , Proteobactérias/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Hidrogenase/genética , Proteobactérias/genética
10.
Plant Cell ; 27(1): 162-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25634988

RESUMO

Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (ß-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga.


Assuntos
Diatomáceas/genética , Ácidos Graxos/metabolismo , Genoma de Planta/genética , Transcriptoma/genética , Triglicerídeos/metabolismo
11.
J Proteome Res ; 12(11): 5293-301, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23879348

RESUMO

For biodiesel production from microalgae, it is desirable to understand the entire triacylglycerol (TAG) metabolism. TAG accumulation occurs in oil bodies, and although oil body-associated proteins could play important roles in TAG metabolism, only a few microalgal species have been studied by a comprehensive analysis. Diatoms are microalgae that are promising producers of biodiesel, on which such proteomics analysis has not been conducted to date. Herein, we identified oil body-associated proteins in the oleaginous diatom Fistulifera sp. strain JPCC DA0580. The oil body fraction was separated by cell disruption with beads beating and subsequent ultracentrifugation. Contaminating factors could be removed by comparing proteins from the oil body and the soluble fractions. This novel strategy successfully revealed 15 proteins as oil body-associated protein candidates. Among them, two proteins, which were parts of proteins predicted to have transmembrane domains, were indeed confirmed to specifically localize to the oil bodies in this strain by observation of GFP fusion proteins. One (predicted to be a potassium channel) was also detected from the ER, suggesting that oil bodies might originate from the ER. By utilizing this novel subtraction method, we succeeded in identifying the oil body-associated proteins in the diatom for the first time.


Assuntos
Biocombustíveis/microbiologia , Diatomáceas/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/genética , Triglicerídeos/metabolismo , Fracionamento Celular , Cromatografia Líquida , Biologia Computacional , Diatomáceas/metabolismo , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Proteômica/métodos , Espectrometria de Massas em Tandem , Ultracentrifugação
12.
Bioresour Technol ; 137: 132-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584413

RESUMO

The present study involved the designing of a culture process and the evaluation of productivity of oil products from a highly oleaginous marine diatom, Fistulifera sp. JPCC DA0580, which had been cultured in a commercial-scale factory. The culture facility had a capacity of 48,000 L and held 96 flat-type 500-L photobioreactors (PBRs) equipped with artificial light, which secures a stable, perennial supply of the products. A 10 days culture that had reached a cell density of 6.5 g dry weight L(-1) possessing a cellular oil content of 48% (wt/wt) was found to provide the highest oil yield. On considering a production area of 1500 m(2), annual algal mass and oil productivity is 68.7 and 33.3 t ha(-1) year(-1), respectively. This study thus provides a reproducible prediction of a theoretical maximum oil yield from a highly oleaginous microalgal strain based on industrially practical production area.


Assuntos
Técnicas de Cultura de Células , Diatomáceas/metabolismo , Óleos/metabolismo , Biocombustíveis , Diatomáceas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA