Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(1): e3534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37501572

RESUMO

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Peptídeos Antimicrobianos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
FASEB J ; 37(2): e22729, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583688

RESUMO

Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Glutationa/metabolismo , Oxirredução , Oxirredutases/metabolismo , Replicação Viral , Processamento de Proteína Pós-Traducional
3.
FASEB J ; 37(2): e22741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583713

RESUMO

The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas Virais/metabolismo , Células HEK293 , Ligação Proteica , Compostos de Sulfidrila/farmacologia
4.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145282

RESUMO

Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.

5.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806198

RESUMO

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV. The search for alternative drugs that can reduce viral infections without undermining the host cell is moving toward antimicrobial peptides (AMPs) of natural occurrence. These include amphibian AMPs belonging to the temporin family. Herein, we focus on temporin G (TG), showing that it strongly affects HSV-1 replication by acting either during the earliest stages of its life cycle or directly on the virion. Computational studies have revealed the ability of TG to interact with HSV-1 glycoprotein B. We also found that TG reduced JCPyV infection, probably affecting both the earliest phases of its life cycle and the viral particle, likely through an interaction with the viral capsid protein VP1. Overall, our results are promising for the development of short naturally occurring peptides as antiviral agents used to counteract diseases related to HSV-1 and JCPyV.


Assuntos
Herpesvirus Humano 1 , Anfíbios , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Herpesvirus Humano 1/fisiologia , Replicação Viral
6.
Biomedicines ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829949

RESUMO

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.

7.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808471

RESUMO

Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.


Assuntos
Glutationa/metabolismo , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Humanos , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viroses/metabolismo
8.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803165

RESUMO

The resinous exudate produced by Commiphora myrrha (Nees) Engl. is commonly known as true myrrh and has been used since antiquity for several medicinal applications. Hundreds of metabolites have been identified in the volatile component of myrrh so far, mainly sesquiterpenes. Although several efforts have been devoted to identifying these sesquiterpenes, the phytochemical analyses have been performed by gas-chromatography/mass spectrometry (GC-MS) where the high temperature employed can promote degradation of the components. In this work, we report the extraction of C. myrrha by supercritical CO2, an extraction method known for the mild extraction conditions that allow avoiding undesired chemical reactions during the process. In addition, the analyses of myrrh oil and of its metabolites were performed by HPLC and GC-MS. Moreover, we evaluated the antiviral activity against influenza A virus of the myrrh extracts, that was possible to appreciate after the addition of vitamin E acetate (α-tocopheryl acetate) to the extract. Further, the single main bioactive components of the oil of C. myrrha commercially available were tested. Interestingly, we found that both furanodienone and curzerene affect viral replication by acting on different steps of the virus life cycle.

9.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572794

RESUMO

Belladine N-oxides active against influenza A virus have been synthetized by a novel laccase-catalyzed 1,4-dioxane-mediated oxidation of aromatic and side-chain modified belladine derivatives. Electron paramagnetic resonance (EPR) analysis confirmed the role of 1,4-dioxane as a co-oxidant. The reaction was chemo-selective, showing a high functional-group compatibility. The novel belladine N-oxides were active against influenza A virus, involving the early stage of the virus replication life cycle.


Assuntos
Antivirais/farmacologia , Dioxanos/química , Vírus da Influenza A/efeitos dos fármacos , Lacase/química , Óxidos/farmacologia , Polyporaceae/enzimologia , Antivirais/química , Catálise , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Oxirredução , Óxidos/química
10.
Front Cell Infect Microbiol ; 11: 804976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071051

RESUMO

Influenza virus infection induces oxidative stress in host cells by decreasing the intracellular content of glutathione (GSH) and increasing reactive oxygen species (ROS) level. Glucose-6-phosphate dehydrogenase (G6PD) is responsible for the production of reducing equivalents of nicotinamide adenine dinucleotide phosphate (NADPH) that is used to regenerate the reduced form of GSH, thus restoring redox homeostasis. Cells deficient in G6PD display elevated levels of ROS and an increased susceptibility to viral infection, although the consequences of G6PD modulation during viral infection remain to be elucidated. In this study, we demonstrated that influenza virus infection decreases G6PD expression and activity, resulting in an increase in oxidative stress and virus replication. Moreover, the down regulation of G6PD correlated with a decrease in the expression of nuclear factor erythroid 2-related factor 2 (NRF2), a key transcription factor that regulates the expression of the antioxidant response gene network. Also down-regulated in influenza virus infected cells was sirtuin 2 (SIRT2), a NADPH-dependent deacetylase involved in the regulation of G6PD activity. Acetylation of G6PD increased during influenza virus infection in a manner that was strictly dependent on SIRT2 expression. Furthermore, the use of a pharmacological activator of SIRT2 rescued GSH production and NRF2 expression, leading to decreased influenza virus replication. Overall, these data identify a novel strategy used by influenza virus to induce oxidative stress and to favor its replication in host cells. These observations furthermore suggest that manipulation of metabolic and oxidative stress pathways could define new therapeutic strategies to interfere with influenza virus infection.


Assuntos
Glucosefosfato Desidrogenase , Orthomyxoviridae , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
11.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521619

RESUMO

Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.


Assuntos
Antivirais/uso terapêutico , Oxirredução/efeitos dos fármacos , Viroses/tratamento farmacológico , Animais , Infecções por Coronavirus/tratamento farmacológico , Glutationa/metabolismo , Humanos , Inflamação/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Viroses/imunologia , Viroses/patologia , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
12.
Nutrients ; 11(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434242

RESUMO

Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.


Assuntos
Cisteína/metabolismo , Glutationa/metabolismo , Infecções/metabolismo , Inflamação/metabolismo , Proteínas/metabolismo , Infecções Bacterianas/metabolismo , Dissulfetos/metabolismo , Humanos , Oxirredução , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Viroses/metabolismo
13.
Oxid Med Cell Longev ; 2019: 6452390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906503

RESUMO

Hepatitis C virus (HCV) is a blood-borne pathogen causing acute and chronic hepatitis. A significant number of people chronically infected with HCV develop cirrhosis and/or liver cancer. The pathophysiologic mechanisms of hepatocyte damage associated with chronic HCV infection are not fully understood yet, mainly due to the lack of an in vitro system able to recapitulate the stages of infection in vivo. Several studies underline that HCV virus replication depends on redox-sensitive cellular pathways; in addition, it is known that virus itself induces alterations of the cellular redox state. However, the exact interplay between HCV replication and oxidative stress has not been elucidated. In particular, the role of reduced glutathione (GSH) in HCV replication and infection is still not clear. We set up an in vitro system, based on low m.o.i. of Huh7.5 cell line with a HCV infectious clone (J6/JFH1), that reproduced the acute and persistent phases of HCV infection up to 76 days of culture. We demonstrated that the acute phase of HCV infection is characterized by the elevated levels of reactive oxygen species (ROS) associated in part with an increase of NADPH-oxidase transcripts and activity and a depletion of GSH accompanied by high rates of viral replication and apoptotic cell death. Conversely, the chronic phase is characterized by a reestablishment of reduced environment due to a decreased ROS production and increased GSH content in infected cells that might concur to the establishment of viral persistence. Treatment with the prooxidant auranofin of the persistently infected cultures induced the increase of viral RNA titer, suggesting that a prooxidant state could favor the reactivation of HCV viral replication that in turn caused cell damage and death. Our results suggest that targeting the redox-sensitive host-cells pathways essential for viral replication and/or persistence may represent a promising option for contrasting HCV infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Fígado/patologia , Fígado/virologia , Estresse Oxidativo , Auranofina/farmacologia , Células Cultivadas , Glutationa/metabolismo , Hepacivirus/efeitos dos fármacos , Humanos , Modelos Biológicos , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , RNA Viral/genética , Espécies Reativas de Oxigênio/metabolismo
14.
FASEB Bioadv ; 1(5): 296-305, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32123833

RESUMO

During aging, glutathione (GSH) content declines and the immune system undergoes a deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is associated with GSH depletion, could weaken the host defenses against viral infections. We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of aged mice infected with influenza A PR8/H1N1 virus was studied through the determination of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production, and Th1/Th2 cytokine profile. Old mice had lower GSH than young mice in organs. Also the gene expression of endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of proteins, that is, Nrf2 and PDI, was reduced. Following infection, GSH content remained low and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI expression was upregulated during infection and appeared counterbalanced by GSH-C4. Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral replication and induced a predominant Th1 response. In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus infection by inducing immune response, in particular the Th1 profile.

15.
Front Immunol ; 9: 1747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105026

RESUMO

Influenza virus replicates intracellularly exploiting several pathways involved in the regulation of host responses. The outcome and the severity of the infection are thus strongly conditioned by multiple host factors, including age, sex, metabolic, and redox conditions of the target cells. Hormones are also important determinants of host immune responses to influenza and are recently proposed in the prophylaxis and treatment. This study shows that female mice are less susceptible than males to mouse-adapted influenza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher survival rate (+36%), milder clinical disease, and less weight loss. They also have milder histopathological signs, especially free alveolar area is higher than that in males, even if pro-inflammatory cytokine production shows slight differences between sexes; hormone levels, moreover, do not vary significantly with infection in our model. Importantly, viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 50%) are lower in PR8-infected females. An analysis of the mechanisms contributing to sex disparities observed during infection reveals that the female animals have higher total antioxidant power in serum and their lungs are characterized by increase in (i) the content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both enzymes promoting viral replication. All these factors are critical for cell homeostasis and susceptibility to infection. Reappraisal of the importance of the host cell redox state and sex-related effects may be useful in the attempt to develop more tailored therapeutic interventions in the fight against influenza.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Oxirredução , Animais , Antioxidantes/metabolismo , Biomarcadores , Citocinas/metabolismo , Resistência à Doença , Suscetibilidade a Doenças , Feminino , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores Sexuais
16.
Molecules ; 23(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126139

RESUMO

DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins' expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanum melongena/química , Animais , Antocianinas/química , Antocianinas/farmacologia , Linhagem Celular , Células Cultivadas , Quelantes/química , Quelantes/farmacologia , Cromatografia Líquida de Alta Pressão , Citoproteção , Flavonoides/química , Flavonoides/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Replicação Viral/efeitos dos fármacos
17.
J Nat Prod ; 80(12): 3247-3254, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29236486

RESUMO

Different catechol and pyrogallol derivatives have been synthesized by oxidation of coumarins with 2-iodoxybenzoic acid (IBX) in DMSO at 25 °C. A high regioselectivity was observed in accordance with the stability order of the incipient carbocation or radical benzylic-like intermediate. The oxidation was also effective in water under heterogeneous conditions by using IBX supported on polystyrene. The new derivatives showed improved antioxidant effects in the DPPH test and inhibitory activity against the influenza A/PR8/H1N1 virus. These data represent a new entry for highly oxidized coumarins showing an antiviral activity possibly based on the control of the intracellular redox value.


Assuntos
Antioxidantes/química , Antivirais/química , Cumarínicos/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Iodobenzenos/química , Células A549 , Antioxidantes/farmacologia , Antivirais/farmacologia , Catecóis/química , Catecóis/farmacologia , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Humanos , Iodobenzenos/farmacologia , Oxirredução/efeitos dos fármacos , Poliestirenos/química , Relação Estrutura-Atividade
18.
Future Med Chem ; 8(17): 2017-2031, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27739328

RESUMO

AIM: Histone deacetylases (HDACs) regulate the life cycle of several viruses. We investigated the ability of different HDAC inhibitors, to interfere with influenza virus A/Puerto Rico/8/34/H1N1 (PR8 virus) replication in Madin-Darby canine kidney and NCI cells. RESULTS: 3-(5-(3-Fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-pyrrol-2-yl)-N-hydroxyacrylamide (MC1568) inhibited HDAC6/8 activity and PR8 virus replication, with decreased expression of viral proteins and their mRNAs. Such an effect may be related to a decrease in intranuclear content of viral polymerases and, in turn, to an early acetylation of Hsp90, a major player in their nuclear import. Later, the virus itself induced Hsp90 acetylation, suggesting a differential and time-dependent role of acetylated proteins in virus replication. CONCLUSION: The inhibition of HDAC6/8 activity during early steps of PR8 virus replication could lead to novel anti-influenza strategy.

19.
Oxid Med Cell Longev ; 2016: 1746985, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26885246

RESUMO

A depletion of reduced glutathione (GSH) has been observed in pathological conditions and in aging. Measuring GSH in tissues using mouse models is an excellent way to assess GSH depletion and the potential therapeutic efficacy of drugs used to maintain and/or restore cellular redox potential. A high performance liquid chromatography (HPLC) method for the simultaneous determination of GSH and cysteine (Cys) in mouse organs was validated according to USA and European standards. The method was based on separation coupled with ultraviolet detection and precolumn derivatization with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The required validation parameters, that are, selectivity, linearity, lower limit of quantification, precision, accuracy, recovery, and stability, were studied for spleen, lymph nodes, pancreas, and brain. The results showed that the lower limits of quantification were 0.313 µM and 1.25 µM for Cys and GSH, respectively. Intraday and interday precisions were less than 11% and 14%, respectively, for both compounds. The mean extraction recoveries of Cys and GSH from all organs were more than 93% and 86%, respectively. Moreover, the stability of both analytes during sample preparation and storage was demonstrated. The method was accurate, reliable, consistent, and reproducible and it was useful to determine Cys and GSH in the organs of different mouse strains.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Cisteína/análise , Glutationa/análise , Animais , Calibragem , Feminino , Limite de Detecção , Camundongos Endogâmicos ICR , Especificidade de Órgãos , Reprodutibilidade dos Testes
20.
Bioorg Med Chem ; 23(17): 5345-51, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26260341

RESUMO

Hydroxytyrosol and dihydrocaffeoyl catechols with lipophilic properties have been synthesized in high yield using tyrosinase immobilized on multi-walled carbon nanotubes by the Layer-by-Layer technique. All synthesized catechols were evaluated against a large panel of DNA and RNA viruses, including Poliovirus type 1, Echovirus type 9, Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), Coxsackievirus type B3 (Cox B3), Adenovirus type 2 and type 5 and Cytomegalovirus (CMV). A significant antiviral activity was observed in the inhibition of HSV-1, HSV-2, Cox B3 and CMV. The mechanism of action of the most active dihydrocaffeoyl derivative was investigated against a model of HSV-1 infection.


Assuntos
Antivirais/química , Antivirais/farmacologia , Catecóis/química , Catecóis/farmacologia , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Agaricus/enzimologia , Infecções por Vírus de DNA/tratamento farmacológico , Enzimas Imobilizadas/química , Humanos , Modelos Moleculares , Monofenol Mono-Oxigenase/química , Nanotubos de Carbono/química , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Infecções por Vírus de RNA/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA