Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948835

RESUMO

The renin-angiotensin system is a highly characterized integrative pathway in mammalian homeostasis whose clinical spectrum has been expanded to lung disorders such as chronic obstructive pulmonary disease (COPD)-emphysema, idiopathic pulmonary fibrosis (IPF), and COVID pathogenesis. Despite this widespread interest, specific localization of this receptor family in the mammalian lung is limited, partially due to the imprecision of available antibody reagents. In this study, we establish the expression pattern of the two predominant angiotensin receptors in the human lung, AGTR1 and AGTR2, using complementary and comprehensive bulk and single-cell RNA-sequence datasets that are publicly available. We show these two receptors have distinct localization patterns and developmental trajectories in the human lung, pericytes for AGTR1 and a subtype of alveolar epithelial type 2 cells for AGTR2. In the context of disease, we further pinpoint AGTR2 localization to the COPD-associated subpopulation of alveolar epithelial type 2 (AT2B) and AGTR1 localization to fibroblasts, where their expression is upregulated in individuals with COPD, but not in individuals with IPF. Finally, we examine the genetic variation of the angiotensin receptors, finding AGTR2 associated with lung phenotype (i.e., cystic fibrosis) via rs1403543. Together, our findings provide a critical foundation for delineating this pathway's role in lung homeostasis and constructing rational approaches for targeting specific lung disorders.

3.
Ann Am Thorac Soc ; 20(1): 1-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584985

RESUMO

E-cigarette or vaping product use-associated lung injury (EVALI) is a severe pulmonary illness associated with the use of e-cigarettes or vaping products that was officially identified and named in 2019. This American Thoracic Society workshop was convened in 2021 to identify and prioritize research and regulatory needs to adequately respond to the EVALI outbreak and to prevent similar instances of disease associated with e-cigarette or vaping product use. An interdisciplinary group of 26 experts in adult and pediatric clinical care, public health, regulatory oversight, and toxicology were convened for the workshop. Four major topics were examined: 1) the public health and regulatory response to EVALI; 2) EVALI clinical care; 3) mechanisms contributing to EVALI; and 4) needed actions to address the health effects of EVALI. Oral presentations and group discussion were the primary modes used to identify top priorities for addressing EVALI. Initiatives including a national EVALI case registry and biorepository, integrated electronic medical record coding system, U.S. Food and Drug Administration regulation and enforcement of nicotine e-cigarette standards, regulatory authority over nontobacco-derived e-cigarettes, training in evaluating exogenous exposures, prospective clinical studies, standardized clinical follow-up assessments, ability to more readily study effects of cannabinoid e-cigarettes, and research to identify biomarkers of exposure and disease were identified as critical needs. These initiatives will require substantial federal investment as well as changes to regulatory policy. Overall, the workshop identified the need to address the root causes of EVALI to prevent future outbreaks. An integrated approach from multiple perspectives is required, including public health; clinical, basic, and translational research; regulators; and users of e-cigarettes. Improving the public health response to reduce the risk of another substantial disease-inducing event depends on coordinated actions to better understand the inhalational toxicity of these products, informing the public of the risks, and developing and enforcing regulatory standards for all e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Adulto , Criança , Humanos , Estados Unidos/epidemiologia , Lesão Pulmonar/epidemiologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Estudos Prospectivos , Surtos de Doenças , Nicotina , Vaping/efeitos adversos
4.
Am J Respir Crit Care Med ; 206(7): 838-845, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649189

RESUMO

Rationale: There are no pharmacologic agents that modify emphysema progression in patients with chronic obstructive pulmonary disease (COPD). Objectives: To evaluate the efficacy of losartan, an angiotensin receptor blocker, to reduce emphysema progression. Methods: The trial was a multicenter, randomized, placebo-controlled trial conducted between May 2017 and January 2021. Eligible participants were aged ⩾40 years, had moderate to severe airflow obstruction, ⩾10 pack-years of smoking, mild-moderate emphysema on high-resolution computed tomography, and no medical indication for or intolerance of angiotensin receptor blockers. Treatment with losartan 100 mg daily or matching placebo (1:1) was randomly assigned. The primary outcome was emphysema progression on high-resolution computed tomography over 48 weeks. Secondary outcomes included the St George's Respiratory Questionnaire, the modified Medical Research Council dyspnea scale, the COPD Assessment Test, and the Physical Function-Short Form 20a. Measurements and Main Results: A total of 220 participants were enrolled; 58% were men, 19% were African American, and 24% were current smokers. The medians (interquartile ranges) for age were 65 (61-73) years and 48 (36-59) for percent predicted FEV1 after bronchodilator use. The mean (95% confidence interval) percentage emphysema progression was 1.35% (0.67-2.03) in the losartan group versus 0.66% (0.09-1.23) in the placebo group (P = NS). Conclusions: Losartan did not prevent emphysema progression in people with COPD with mild-moderate emphysema. Clinical trial registered with www.clinicaltrials.gov (NCT02696564).


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Idoso , Antagonistas de Receptores de Angiotensina/uso terapêutico , Broncodilatadores/uso terapêutico , Progressão da Doença , Feminino , Volume Expiratório Forçado , Humanos , Losartan/uso terapêutico , Masculino , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/complicações , Enfisema Pulmonar/tratamento farmacológico
5.
Sci Rep ; 12(1): 3080, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197532

RESUMO

Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-ß (TGFß) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFß1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFß1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFß1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.


Assuntos
Antifibróticos/farmacologia , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Piridonas/farmacologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antifibróticos/uso terapêutico , Caderinas/genética , Caderinas/metabolismo , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Piridonas/uso terapêutico , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Tensinas/genética , Tensinas/metabolismo
7.
Aging Cell ; 19(4): e13130, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32170906

RESUMO

The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.


Assuntos
Senescência Celular , Células Epiteliais/metabolismo , Interleucina-10/metabolismo , Pulmão/metabolismo , Linfócitos/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Interleucina-10/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Curr Opin Pulm Med ; 24(4): 327-334, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29677028

RESUMO

PURPOSE OF REVIEW: The Centers for Medicare and Medicaid Services' requirement to integrate tobacco treatment with lung cancer screening (LCS) has served as a catalyst for motivating pulmonary medicine clinicians to improve upon their ability to effectively treat tobacco dependence. To do so, clinicians need to be well versed in the behavioral and pharmacologic tools that promote smoking cessation. RECENT FINDINGS: The current review outlines current strategies for treating tobacco dependence, focusing on the important interplay between counseling and pharmacotherapy. Studies that have been found to be particularly effective in patients with smoking-related lung disease and in the LCS setting are reviewed. New therapies that are in the pipeline, as well as novel strategies aimed at improving both adoption and effectiveness of existing therapies, are discussed. SUMMARY: Treating tobacco dependence improves mortality and quality of life far more than the limited therapies available to treat smoking-related lung disease. Novel strategies to making tobacco treatment services more widely available, particularly to vulnerable patient populations, are needed to further decrease smoking-related morbidity and mortality. The Affordable Care Act's greater focus on prevention represents a moment of opportunity for healthcare providers and systems to engage in these efforts.


Assuntos
Aconselhamento Diretivo , Neoplasias Pulmonares/diagnóstico , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Abandono do Hábito de Fumar , Tabagismo/terapia , Bupropiona/uso terapêutico , Detecção Precoce de Câncer , Humanos , Dispositivos para o Abandono do Uso de Tabaco , Vareniclina/uso terapêutico
10.
Ann Am Thorac Soc ; 13(12): 2115-2118, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27689306

RESUMO

An important approach to reduce youth tobacco use is the adoption of regulations to prohibit tobacco product sale to individuals younger than 21 years, termed Tobacco 21. In the United States, close to 90% of current smokers started smoking before the age of 18 years, and 99% before age 26 years. Earlier age of tobacco use initiation is associated with lower rates of smoking cessation. Increasing minimum age to purchase has been shown to reduce tobacco product use among youth. The critical determinant is likely the loss of social sources of tobacco products. Enforcement activities are important for age-of-purchase laws to be effective. Raising the minimum legal age to purchase tobacco products to 21 years is highly supported among both the smoking and nonsmoking public. Tobacco sales to those younger than 21 years account for just 2% of total tobacco sales, yet produce 90% of new smokers. The short-term effect on small business of raising the minimum age to purchase would be minimal. Small businesses will have time to adapt to the decrease in tobacco sales as fewer youth grow up nicotine addicted. Raising the minimum age to purchase of tobacco and nicotine products to 21 years, combined with enforcement of those restrictions, will help protect future generations from a lifetime of tobacco dependence and associated morbidity. These regulations should apply to all tobacco products, including electronic nicotine delivery systems. Respiratory health care providers should educate their local, state, and federal policy makers on the importance of Tobacco 21.


Assuntos
Comércio/legislação & jurisprudência , Política Pública/legislação & jurisprudência , Produtos do Tabaco/legislação & jurisprudência , Regulamentação Governamental , Humanos , Fumar/epidemiologia , Abandono do Hábito de Fumar , Produtos do Tabaco/economia , Tabagismo/prevenção & controle , Estados Unidos , Adulto Jovem
11.
PLoS One ; 9(4): e95099, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743155

RESUMO

BACKGROUND: Vitamin D deficiency is associated with reduced lung function. Cathelicidin, an antimicrobial peptide regulated by vitamin D, plays a role within the innate immune system. The association of cathelicidin with lung function decrement and respiratory infection is undefined. We determined the independent relationship of cathelicidin with lung function. METHODS: In a cross-sectional analysis of 650 participants in an urban observational cohort with high smoking prevalence, plasma 25(OH)-vitamin D and cathelicidin levels were measured from stored samples obtained within 6 months of spirometry study visits. Multivariable linear regression was used to determine the independent association between low cathelicidin (defined as the lowest quartile of the cohort) and absolute forced expiratory volume in 1 second (FEV1). RESULTS: The mean age of the cohort was 49 years; 91% were black, 35% female and 41% HIV-infected. Participants with low cathelicidin had a 183 mL lower FEV1 compared to higher cathelicidin (p = 0.009); this relationship was maintained (115 ml lower; p = 0.035) after adjusting for demographics, BMI, and smoking. Neither HIV serostatus, heavy smoking history, nor 25(OH)-vitamin D levels were associated with cathelicidin levels. Participants with low cathelicidin had a greater prevalence of prior bacterial pneumonia (21% versus 14%; p = 0.047). Inclusion of pneumonia in adjusted models did not substantially reduce the FEV1 decrement observed with low cathelicidin (104 mL lower FEV1; p = 0.05). Lung function decrements associated with low cathelicidin were greatest among individuals with lower 25(OH)-vitamin D levels. CONCLUSIONS: In a cohort at risk for airflow obstruction, low cathelicidin was independently associated with lower FEV1. These clinical data support a mechanistic link between 25(OH)-vitamin D deficiency and lung function impairment, independent of pneumonia risk.


Assuntos
Peptídeos Catiônicos Antimicrobianos/sangue , Volume Expiratório Forçado , Pulmão/fisiopatologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/fisiopatologia , Adulto , Estudos Transversais , Feminino , Infecções por HIV/sangue , Infecções por HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/sangue , Fumar/fisiopatologia , Vitamina D/análogos & derivados , Vitamina D/sangue , Catelicidinas
12.
Am J Respir Cell Mol Biol ; 51(3): 380-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24673633

RESUMO

Bronchopulmonary dysplasia (BPD), a common chronic respiratory disease that occurs after premature birth, is believed to be secondary to oxidative damage from hyperoxia and inflammation, which leads to impaired alveolar formation and chronic lung dysfunction. We hypothesized that extracellular superoxide dismutase (SOD)3, an antioxidant uniquely targeted to the extracellular matrix (ECM) and alveolar fluid, might have a different response (down-regulation) to hyperoxic injury and recovery in room air (RA), thereby contributing to the persistent airspace injury and inflammation. We used a murine BPD model using postnatal hyperoxia (O2) (4 or 5 d) followed by short-term recovery (14 d) in RA, which mimics the durable effects after injury during alveolar development. This was associated with significantly increased mRNA expression for antioxidant genes mediated by nuclear factor erythroid 2-related factor (Nrf2) in the O2 (n = 4) versus RA group (n = 5). SOD3, an Nrf2-independent antioxidant, was significantly reduced in the O2-exposed mice compared with RA. Immunohistochemistry revealed decreased and disrupted SOD3 deposition in the alveolar ECM of O2-exposed mice. Furthermore, this distinct hyperoxic antioxidant and injury profile was reproducible in murine lung epithelial 12 cells exposed to O2. Overexpression of SOD3 rescued the injury measures in the O2-exposed cells. We establish that reduced SOD3 expression correlates with alveolar injury measures in the recovered neonatal hyperoxic lung, and SOD3 overexpression attenuates hyperoxic injury in an alveolar epithelial cell line. Such findings suggest a candidate mechanism for the pathogenesis of BPD that may lead to targeted interventions.


Assuntos
Displasia Broncopulmonar/patologia , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Lesão Pulmonar/metabolismo , Pulmão/patologia , Superóxido Dismutase/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/química , Displasia Broncopulmonar/enzimologia , Feminino , Hiperóxia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/química , Mucosa Respiratória/metabolismo
13.
PLoS Genet ; 9(2): e1003228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459311

RESUMO

The alveolar compartment, the fundamental gas exchange unit in the lung, is critical for tissue oxygenation and viability. We explored hepatocyte growth factor (HGF), a pleiotrophic cytokine that promotes epithelial proliferation, morphogenesis, migration, and resistance to apoptosis, as a candidate mediator of alveolar formation and regeneration. Mice deficient in the expression of the HGF receptor Met in lung epithelial cells demonstrated impaired airspace formation marked by a reduction in alveolar epithelial cell abundance and survival, truncation of the pulmonary vascular bed, and enhanced oxidative stress. Administration of recombinant HGF to tight-skin mice, an established genetic emphysema model, attenuated airspace enlargement and reduced oxidative stress. Repair in the TSK/+ mouse was punctuated by enhanced akt and stat3 activation. HGF treatment of an alveolar epithelial cell line not only induced proliferation and scattering of the cells but also conferred protection against staurosporine-induced apoptosis, properties critical for alveolar septation. HGF promoted cell survival was attenuated by akt inhibition. Primary alveolar epithelial cells treated with HGF showed improved survival and enhanced antioxidant production. In conclusion, using both loss-of-function and gain-of-function maneuvers, we show that HGF signaling is necessary for alveolar homeostasis in the developing lung and that augmentation of HGF signaling can improve airspace morphology in murine emphysema. Our studies converge on prosurvival signaling and antioxidant protection as critical pathways in HGF-mediated airspace maintenance or repair. These findings support the exploration of HGF signaling enhancement for diseases of the airspace.


Assuntos
Fator de Crescimento de Hepatócito , Homeostase , Proteínas Proto-Oncogênicas c-met , Alvéolos Pulmonares , Animais , Movimento Celular/genética , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fator de Crescimento de Hepatócito/administração & dosagem , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas c-met/deficiência , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/fisiopatologia , Transdução de Sinais , Sobrevivência de Tecidos/genética
14.
Pediatr Allergy Immunol Pulmonol ; 24(2): 119-125, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-35927882

RESUMO

The complex disorders of chronic obstructive pulmonary disease (COPD) and bronchopulmonary dysplasia (BPD) are common, costly, and clinically burdensome. Both lung disorders develop after complex injurious triggers and can result in significant lung disease and disability. Similarities in their lung pathology and injury measures suggest common pathogenetic mechanisms. Evidence exists for both common molecular triggers and for injury-by-age interactions that may confer distinct end pathology. An emerging concept is that BPD may be a predisposing pathology for COPD development in late life. Future studies focusing on this provocative connection between BPD and COPD may translate into novel ameliorative and regenerative therapies for both disorders.

15.
Am J Pathol ; 175(1): 84-96, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19541933

RESUMO

Alveolar enlargement, which is characteristic of bronchopulmonary dysplasia, congenital matrix disorders, and cigarette smoke-induced emphysema, is thought to result from enhanced inflammation and ensuing excessive matrix proteolysis. Although there is recent evidence that cell death and oxidative stress punctuate these diseases, the mechanistic link between abnormal lung extracellular matrix and alveolar enlargement is lacking. We hypothesized that the tight-skin (TSK) mouse, which harbors a spontaneous internal duplication in the microfibrillar glycoprotein fibrillin-1, might show whether matrix alterations are sufficient to promote oxidative stress and cell death, injury cascades central to the development of clinical emphysema. We observed no evidence of increased metalloprotease activation by histochemical and zymographic methods. We did find initial oxidative stress followed by increased apoptosis in the postnatal TSK lung. Both blunted antioxidant production and reduced extracellular superoxide dismutase activity were evident in the neonatal lung. High-dose antioxidant treatment with N-acetylcysteine improved airspace caliber and attenuated oxidative stress and apoptosis in neonatal and adult TSK mice. These data establish that an abnormal extracellular matrix without overt elastolysis is sufficient to confer susceptibility to postnatal normoxia, reminiscent of bronchopulmonary dysplasia. The resultant oxidative stress and apoptosis culminate in profound airspace enlargement. The TSK lung exemplifies the critical interplay between extracellular matrix, oxidative stress, and cell-death cascades that may contribute to genetic and acquired airspace enlargement.


Assuntos
Apoptose/fisiologia , Matriz Extracelular/patologia , Estresse Oxidativo/fisiologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia , Animais , Antioxidantes/metabolismo , Western Blotting , Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Perfilação da Expressão Gênica , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Enfisema Pulmonar/genética
16.
J Biol Chem ; 283(30): 21160-9, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18339630

RESUMO

Despite the importance of airspace integrity in vertebrate gas exchange, the molecular pathways that instruct distal lung formation are poorly understood. Recently, we found that fibrillin-1 deficiency in mice impairs alveolar formation and recapitulates the pulmonary features of human Marfan syndrome. To further elucidate effectors involved in distal lung formation, we performed expression profiling analysis comparing the fibrillin-1-deficient and wild-type developing lung. NeuroD, a basic helix-loop-helix transcription factor, fulfilled the expression criteria for a candidate mediator of distal lung development. We investigated its role in murine lung development using genetically targeted NeuroD-deficient mice. We found that NeuroD deficiency results in both impaired alveolar septation and altered morphology of the pulmonary neuroendocrine cells. NeuroD-deficient mice had enlarged alveoli associated with reduced epithelial proliferation in the airway and airspace compartments during development. Additionally, the neuroendocrine compartment in these mice manifested an increased number of neuroepithelial bodies but a reduced number of solitary pulmonary neuroendocrine cells in the neonatal lung. Overexpression of NeuroD in a murine lung epithelial cell line conferred a neuroendocrine phenotype characterized by the induction of neuroendocrine markers as well as increased proliferation. These results support an unanticipated role for NeuroD in the regulation of pulmonary neuroendocrine and alveolar morphogenesis and suggest an intimate connection between the neuroendocrine compartment and distal lung development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Pulmão/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Epiteliais/citologia , Fibrilina-1 , Fibrilinas , Perfilação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Fenótipo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA