Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 158, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103848

RESUMO

PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.


Assuntos
Proteína BRCA1 , Resistencia a Medicamentos Antineoplásicos , Éxons , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Sítios de Splice de RNA , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Proteína BRCA1/genética , Feminino , Animais , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Mutação , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
2.
Dis Aquat Organ ; 159: 91-97, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145475

RESUMO

Ichthyophonosis is a disease caused by the mesomycetozoean parasite Ichthyophonus hoferi that affects a variety of fish species, including rainbow trout Oncorhynchus mykiss Walbaum. This disease is characterized by granulomatous lesions and necrosis in various organs, which can have severe impacts on the health and welfare of the fish. Ichthyophonosis has been found in several parts of the world, including Europe, and is a significant concern in the aquaculture industry and for populations of wild marine fishes. The rainbow trout is a widely cultured salmonid species in many countries, including Serbia. Although the presence of I. hoferi in rainbow trout has been reported in several countries, it has never been documented in Serbia. In this article, we report the first case of ichthyophonosis in rainbow trout in Serbia.


Assuntos
Aquicultura , Doenças dos Peixes , Infecções por Mesomycetozoea , Mesomycetozoea , Oncorhynchus mykiss , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Sérvia/epidemiologia , Infecções por Mesomycetozoea/epidemiologia , Infecções por Mesomycetozoea/parasitologia , Mesomycetozoea/isolamento & purificação
3.
NAR Cancer ; 6(3): zcae033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39055334

RESUMO

In ovarian and breast cancer, promoter methylation of BRCA1 or RAD51C is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types. Here, we showed that BRCA1 methylated cancers were associated with reduced gene expression, loss of heterozygosity (LOH), TP53 mutations and genomic features of HRD. We identified BRCA1 methylation in 3% of the copy-number high subtype of endometrial cancer, and as a rare event in six other cancer types, including lung squamous cell, pancreatic, bladder and stomach cancer. RAD51C promoter methylation was widespread across multiple cancer types, but HRD features were only observed for cases which contained high-level tumour methylation and LOH of RAD51C. While RAD51C methylation was frequent in stomach adenocarcinoma (6%) and low-grade glioma (2.5%), it was mostly detected at a low tumour level, suggestive of heterozygous methylation, and was associated with CpG island methylator phenotype. Our findings indicate that high-level tumour methylation of BRCA1 and RAD51C should be explored as a PARP inhibitor biomarker across multiple cancers.

4.
Ther Adv Med Oncol ; 16: 17588359231220511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293277

RESUMO

Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.


Silencing genes role in initiation of cancer and clinical impacts Genes can be silenced by molecular tags being placed on them. This is a normal process that controls when and where genes are available to be used. In some cases this silencing can be incorrectly applied to genes involved in preventing cancer, causing cancer initiation and progression. This review discusses the role of one of these tagging processes, DNA methylation and its role in initiation of cancer and implications for treatment.

5.
Ther Adv Med Oncol ; 15: 17588359231208674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028140

RESUMO

Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results: Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion: The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.

6.
J Exp Clin Cancer Res ; 42(1): 112, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143137

RESUMO

BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.


Assuntos
Leiomiossarcoma , Neoplasias Ovarianas , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Platina , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Neoplasias Ovarianas/patologia , Recombinação Homóloga
7.
medRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993400

RESUMO

BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.

8.
NAR Cancer ; 3(3): zcab028, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34316715

RESUMO

Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.

9.
Cancer Res ; 81(18): 4709-4722, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321239

RESUMO

In high-grade serous ovarian carcinoma (HGSC), deleterious mutations in DNA repair gene RAD51C are established drivers of defective homologous recombination and are emerging biomarkers of PARP inhibitor (PARPi) sensitivity. RAD51C promoter methylation (meRAD51C) is detected at similar frequencies to mutations, yet its effects on PARPi responses remain unresolved.In this study, three HGSC patient-derived xenograft (PDX) models with methylation at most or all examined CpG sites in the RAD51C promoter show responses to PARPi. Both complete and heterogeneous methylation patterns were associated with RAD51C gene silencing and homologous recombination deficiency (HRD). PDX models lost meRAD51C following treatment with PARPi rucaparib or niraparib, where a single unmethylated copy of RAD51C was sufficient to drive PARPi resistance. Genomic copy number profiling of one of the PDX models using SNP arrays revealed that this resistance was acquired independently in two genetically distinct lineages.In a cohort of 12 patients with RAD51C-methylated HGSC, various patterns of meRAD51C were associated with genomic "scarring," indicative of HRD history, but exhibited no clear correlations with clinical outcome. Differences in methylation stability under treatment pressure were also observed between patients, where one HGSC was found to maintain meRAD51C after six lines of therapy (four platinum-based), whereas another HGSC sample was found to have heterozygous meRAD51C and elevated RAD51C gene expression (relative to homozygous meRAD51C controls) after only neoadjuvant chemotherapy.As meRAD51C loss in a single gene copy was sufficient to cause PARPi resistance in PDX, methylation zygosity should be carefully assessed in previously treated patients when considering PARPi therapy. SIGNIFICANCE: Homozygous RAD51C methylation is a positive predictive biomarker for sensitivity to PARP inhibitors, whereas a single unmethylated gene copy is sufficient to confer resistance.


Assuntos
Cistadenocarcinoma Seroso/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Regiões Promotoras Genéticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Biologia Computacional , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Homozigoto , Humanos , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 9(1): 3970, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266954

RESUMO

Accurately identifying patients with high-grade serous ovarian carcinoma (HGSOC) who respond to poly(ADP-ribose) polymerase inhibitor (PARPi) therapy is of great clinical importance. Here we show that quantitative BRCA1 methylation analysis provides new insight into PARPi response in preclinical models and ovarian cancer patients. The response of 12 HGSOC patient-derived xenografts (PDX) to the PARPi rucaparib was assessed, with variable dose-dependent responses observed in chemo-naive BRCA1/2-mutated PDX, and no responses in PDX lacking DNA repair pathway defects. Among BRCA1-methylated PDX, silencing of all BRCA1 copies predicts rucaparib response, whilst heterozygous methylation is associated with resistance. Analysis of 21 BRCA1-methylated platinum-sensitive recurrent HGSOC (ARIEL2 Part 1 trial) confirmed that homozygous or hemizygous BRCA1 methylation predicts rucaparib clinical response, and that methylation loss can occur after exposure to chemotherapy. Accordingly, quantitative BRCA1 methylation analysis in a pre-treatment biopsy could allow identification of patients most likely to benefit, and facilitate tailoring of PARPi therapy.


Assuntos
Proteína BRCA1/genética , Metilação de DNA , Indóis/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Dosagem de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
12.
AMB Express ; 8(1): 128, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30088183

RESUMO

Considering the intensive trading nowadays, the honey from the local market was tested for the presence of the six most common bee viruses. To prove the suitability of honey as a sample for the bee viruses detection, the set of different sample types taken directly from the hives we comparatively tested. The study included 30 samples of domestic and 5 samples of imported honey. Additionally, we tested 40 sets of samples including live bees, dead bees, and the honey taken from four apiaries for the evaluation of honey suitability for the virus detection, Two out of the six most common bee viruses were detected in the samples of honey from the market. Black queen cell virus (BQCV) genome was found in 24 domestic honey samples and Kashmir bee virus (KBV) genome was detected in one sample of imported honey. The nucleotide sequences of 24 BQCV isolates showed the highest identity (86.4%) with strains from Europe at the polyprotein gene, whilst the Serbian isolates between each other showed 98.5% similarity. By comparative testing of the different type of samples, in three out of four apiaries BQCV genome was detected in both bees and honey. Evaluating the suitability of honey for the detection of the viral disease by simultaneous testing of live, dead bees, and honey from the same hive, it was shown that the honey can be successfully used for the detection of BQCV. Since, as of yet, there has been no evidence of KBV circulation in Serbia, after its detection in imported honey, there is a substantial risk of its introduction and consequently the need for its surveillance. Therefore, the programs of bee diseases screening should be included in the regular control procedures for the international trade. In addition to this benefit, honey gives an opportunity to beekeepers for continuous monitoring of bees' health status.

13.
J Pathol ; 244(5): 586-597, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29282716

RESUMO

Genomic instability and mutations are fundamental aspects of human malignancies, leading to progressive accumulation of the hallmarks of cancer. For some time, it has been clear that key mutations may be used as both prognostic and predictive biomarkers, the best-known examples being the presence of germline BRCA1 or BRCA2 mutations, which are not only associated with improved prognosis in ovarian cancer, but are also predictive of response to poly(ADP-ribose) polymerase (PARP) inhibitors. Although biomarkers as specific and powerful as these are rare in human malignancies, next-generation sequencing and improved bioinformatic analyses are revealing mutational signatures, i.e. broader patterns of alterations in the cancer genome that have the power to reveal information about underlying driver mutational processes. Thus, the cancer genome can act as a stratification factor in clinical trials and, ultimately, will be used to drive personalized treatment decisions. In this review, we use ovarian high-grade serous carcinoma (HGSC) as an example of a disease of extreme genomic complexity that is marked by widespread copy number alterations, but that lacks powerful driver oncogene mutations. Understanding of the genomics of HGSC has led to the routine introduction of germline and somatic BRCA1/2 testing, as well as testing of mutations in other homologous recombination genes, widening the range of patients who may benefit from PARP inhibitors. We will discuss how whole genome-wide analyses, including loss of heterozygosity quantification and whole genome sequencing, may extend this paradigm to allow all patients to benefit from effective targeted therapies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Dano ao DNA , Reparo do DNA , Genômica/métodos , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Ovarianas/genética , Patologia Molecular/métodos , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Tomada de Decisão Clínica , Feminino , Predisposição Genética para Doença , Humanos , Mutação , Gradação de Tumores , Neoplasias Císticas, Mucinosas e Serosas/tratamento farmacológico , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fenótipo , Medicina de Precisão , Valor Preditivo dos Testes
14.
Rev Environ Contam Toxicol ; 228: 101-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24162094

RESUMO

Exposure to mycotoxins occurs worldwide, even though there are geographic and climatic differences in the amounts produced and occurrence of these substances.Mycotoxins are secondary chemical metabolites of different fungi. They are natural contaminants of cereals, so their presence is often inevitable. Among many genera that produce mycotoxins, Fusarium fungi are the most widespread in cereal-growing areas of the planet. Fusarium fungi produce a diversity of mycotoxin types, whose distributions are also diverse. What is produced and where it is produced is influenced primarily by environmental conditions, and crop production and storage methods. The amount of toxin produced depends on physical (viz., moisture, relative humidity, temperature, and mechanical damage), chemical (viz., carbon dioxide,oxygen, composition of substrate, insecticides and fungicides), and biological factors (viz., plant variety, stress, insects, spore load, etc.). Moisture and temperature have a major influence on mold growth rate and mycotoxin production.Among the most toxic and prevalent fusaria) toxins are the following: zearalenone,fumonisins, moniliformin and trichothecenes (T-2/HT-2 toxin, deoxynivalenol,diacetoxyscirpenol, nivalenol). Zearalenone (ZEA; ZON, F-2 toxin) isaphy to estrogenic compound, primarily a field contaminant, which exhibits estrogenic activity and has been implicated in numerous mycotoxicoses of farm animals,especially pigs. Recently, evidence suggests that ZEA has potential to stimulate the growth of human breast cancer cells. Fumonisins are also cancer-promoting metabolites,of which Fumonisin 8 I (FBI) is the most important. Moniliformin (MON) isalso highly toxic to both animals and humans. Trichothecenes are classified as gastrointestinal toxins, dermatotoxins, immunotoxins, hematotoxins, and gene toxins.T-2 and HT-2 toxin, and diacetoxyscirpenol (DAS, anguidine) are the most toxic mycotoxins among the trichothecene group. Deoxynivalenol (DON, vomitoxin) and nivalenol although less toxic are important because they frequently occur at levels high enough to cause adverse effects.The presence of mycotoxins in the animal diet can produce significant production losses. Any considerable presence of mycotoxins, in major dietary components,confirms the need to adopt a continuous prevention and control program. Such programs are usually based on several common approaches to minimize mycotoxin contamination in the food chain. Major strategies include preventing fungal growth and therefore mycotoxin formation, reducing or eliminating mycotoxins from contaminated feedstuffs, or diverting contaminated products to low risk uses. Because of the complexity of their chemical structures, mycotoxins also present a major analytical challenge. They are also found in a vast array of feed matrices. Analysis is essential for determining the extent of mycotoxin contamination, for risk analysis, confirming the diagnosis of a mycotoxicosis and for monitoring mycotoxin mitigation strategies.For the future, adequately controlling the mycotoxin problem in the livestock economy will depend on implementing appropriate agricultural management policies,as well as augmenting production and storage systems and analysis methods.Only such policies offer the opportunity to bring solid and long-lasting economical results to the livestock industry that is afflicted with the mycotoxin problem.


Assuntos
Fusarium/metabolismo , Micotoxinas/toxicidade , Ciclobutanos/toxicidade , Grão Comestível/microbiologia , Contaminação de Alimentos/prevenção & controle , Fumonisinas/toxicidade , Humanos , Micotoxinas/análise , Micotoxinas/biossíntese , Tricotecenos/toxicidade , Zearalenona/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA