Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163146

RESUMO

Two isoforms of human cardiac myosin, alpha and beta, share significant sequence similarities but show different kinetics. The alpha isoform is a faster motor; it spends less time being strongly bound to actin during the actomyosin cycle. With alpha isoform, actomyosin dissociates faster upon ATP binding, and the affinity of ADP to actomyosin is weaker. One can suggest that the isoform-specific actomyosin kinetics is regulated at the nucleotide binding site of human cardiac myosin. Myosin is a P-loop ATPase; the nucleotide-binding site consists of P-loop and loops switch 1 and 2. All three loops position MgATP for successful hydrolysis. Loops sequence is conserved in both myosin isoforms, and we hypothesize that the isoform-specific structural element near the active site regulates the rate of nucleotide binding and release. Previously we ran molecular dynamics simulations and found that loop S291-E317 near loop switch 1 is more compact and exhibits larger fluctuations of the position of amino acid residues in beta isoform than in alpha. In alpha isoform, the loop forms a salt bridge with loop switch 1, the bridge is not present in beta isoform. Two isoleucines I303 and I313 of loop S291-E317 are replaced with valines in alpha isoform. We introduced a double mutation I303V:I313V in beta isoform background and studied how the mutation affects the rate of ATP binding and ADP dissociation from actomyosin. We found that ATP-induced actomyosin dissociation occurs faster in the mutant, but the rate of ADP release remains the same as in the wild-type beta isoform. Due to the proximity of loop S291-E317 and loop switch 1, a faster rate of ATP-induced actomyosin dissociation indicates that loop S291-E317 affects structural dynamics of loop switch 1, and that loop switch 1 controls ATP binding to the active site. A similar rate of ADP dissociation from actomyosin in the mutant and wild-type myosin constructs indicates that loop switch 1 does not control ADP release from actomyosin.


Assuntos
Actomiosina/química , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Sítios de Ligação , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
2.
J Muscle Res Cell Motil ; 43(1): 1-8, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825297

RESUMO

Double mutation D208Q:K450L was introduced in the beta isoform of human cardiac myosin to remove the salt bridge D208:K450 connecting loop 1 and the seven-stranded beta sheet within the myosin head. Beta isoform-specific salt bridge D208:K450, restricting the flexibility of loop 1, was previously discovered in molecular dynamics simulations. Earlier it was proposed that loop 1 modulates nucleotide affinity to actomyosin and we hypothesized that the electrostatic interactions between loop 1 and myosin head backbone regulate ATP binding to and ADP dissociation from actomyosin, and therefore, the time of the strong actomyosin binding. To examine the hypothesis we expressed the wild type and mutant of the myosin head construct (1-843 amino acid residues) in differentiated C2C12 cells, and the kinetics of ATP-induced actomyosin dissociation and ADP release were characterized using stopped-flow spectrofluorometry. Both constructs exhibit a fast rate of ATP binding to actomyosin and a slow rate of ADP dissociation, showing that ADP release limits the time of the strongly bound state of actomyosin. We observed a faster rate of ATP-induced actomyosin dissociation with the mutant, compared to the wild type actomyosin. The rate of ADP release from actomyosin remains the same for the mutant and the wild type actomyosin. We conclude that the flexibility of loop 1 is a factor affecting the rate of ATP binding to actomyosin and actomyosin dissociation. The flexibility of loop 1 does not affect the rate of ADP release from human cardiac actomyosin.


Assuntos
Actomiosina , Miosinas Cardíacas , Actinas/metabolismo , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Cinética , Ligação Proteica , Isoformas de Proteínas/metabolismo , Eletricidade Estática
3.
J Muscle Res Cell Motil ; 42(2): 137-147, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32929610

RESUMO

Two single mutations, R694N and E45Q, were introduced in the beta isoform of human cardiac myosin to remove permanent salt bridges E45:R694 and E98:R694 in the SH1-SH2 helix of the myosin head. Beta isoform-specific bridges E45:R694 and E98:R694 were discovered in the molecular dynamics simulations of the alpha and beta myosin isoforms. Alpha and beta isoforms exhibit different kinetics, ADP dissociates slower from actomyosin containing beta myosin isoform, therefore, beta myosin stays strongly bound to actin longer. We hypothesize that the electrostatic interactions in the SH1-SH2 helix modulate the affinity of ADP to actomyosin, and therefore, the time of the strong actomyosin binding. Wild type and the mutants of the myosin head construct (1-843 amino acid residues) were expressed in differentiated C2C12 cells, and the duration of the strongly bound state of actomyosin was characterized using transient kinetics spectrophotometry. All myosin constructs exhibited a fast rate of ATP binding to actomyosin and a slow rate of ADP dissociation, showing that ADP release limits the time of the strongly bound state of actomyosin. The mutant R694N showed a faster rate of ADP release from actomyosin, compared to the wild type and the E45Q mutant, thus indicating that electrostatic interactions within the SH1-SH2 helix region of human cardiac myosin modulate ADP release and thus, the duration of the strongly bound state of actomyosin.


Assuntos
Actomiosina , Miosinas Cardíacas , Actinas/metabolismo , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina , Miosinas Cardíacas/genética , Humanos , Cinética , Subfragmentos de Miosina/metabolismo , Ligação Proteica , Eletricidade Estática
4.
J Muscle Res Cell Motil ; 40(3-4): 389-398, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31556008

RESUMO

Calcium plays an essential role in muscle contraction, regulating actomyosin interaction by binding troponin of thin filaments. There are several buffers for calcium in muscle, and those buffers play a crucial role in the formation of the transient calcium wave in sarcomere upon muscle activation. One such calcium buffer in muscle is ATP. ATP is a fuel molecule, and the important role of MgATP in muscle is to bind myosin and supply energy for the power stroke. Myosin is not a specific ATPase, and CaATP also supports myosin ATPase activity. The concentration of CaATP in sarcomeres reaches 1% of all ATP available. Since 294 myosin molecules form a thick filament, naïve estimation gives three heads per filament with CaATP bound, instead of MgATP. We found that CaATP dissociates actomyosin slower than MgATP, thus increasing the time of the strong actomyosin binding. The rate of the basal CaATPase is faster than that of MgATPase, myosin readily produces futile stroke with CaATP. When calcium is upregulated, as in malignant hyperthermia, kinetics of myosin and actomyosin interaction with CaATP suggest that myosin CaATPase activity may contribute to observed muscle rigidity and enhanced muscle thermogenesis.


Assuntos
Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo , Animais , Coelhos
5.
Biochem Biophys Res Commun ; 509(4): 978-982, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654937

RESUMO

Human cardiac myosin has two isoforms, alpha and beta, sharing significant sequence similarity, but different in kinetics: ADP release from actomyosin is an order of magnitude faster in the alpha myosin isoform. Apparently, small differences in the sequence are responsible for distinct local inter-residue interactions within alpha and beta isoforms, leading to such a dramatic difference in the rate of ADP release. Our analysis of structural kinetics of alpha and beta isoforms using molecular dynamics simulations revealed distinct dynamics of SH1:SH2 helix within the force-generation region of myosin head. The simulations showed that the residue R694 of the helix forms two permanent salt bridges in the beta isoform, which are not present in the alpha isoform. We hypothesized that the isoform-specific electrostatic interactions play a role in the difference of kinetic properties of myosin isoforms. We prepared R694N mutant in the beta isoform background to destabilize electrostatic interactions in the force-generating region of the myosin head. Our experimental data confirm faster ADP release from R694N actomyosin mutant, but is not as dramatic as the difference of kinetics of ADP release in the alpha and beta isoforms.


Assuntos
Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Miosinas Cardíacas/fisiologia , Eletricidade Estática , Actomiosina/genética , Humanos , Cinética , Simulação de Dinâmica Molecular , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
6.
Protein Sci ; 26(11): 2181-2186, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795448

RESUMO

Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Magnésio/química , Manganês/química , Miosinas/química , Fosfatos/química , Animais , Domínio Catalítico , Cátions Bivalentes , Músculo Esquelético/química , Miosinas/isolamento & purificação , Conformação Proteica , Coelhos , Análise Espectral Raman , Eletricidade Estática
7.
Biophys J ; 111(1): 178-84, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27410745

RESUMO

Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase.


Assuntos
Actomiosina/metabolismo , Ficoll/farmacologia , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise/efeitos dos fármacos , Cinética
8.
Methods Mol Biol ; 1084: 63-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24061916

RESUMO

Multifrequency electron paramagnetic resonance (EPR) of spin-labeled protein is a powerful spectroscopic technique to study protein dynamics on the rotational correlation time scale from 100 ps to 100 ns. Nitroxide spin probe, attached to cysteine residue, reports on local topology within the labeling site, dynamics of protein domains reorientation, and protein global tumbling in solution. Due to spin probe's magnetic tensors anisotropy, its mobility is directly reflected by the EPR lineshape. The multifrequency approach significantly decreases ambiguity of EPR spectra interpretation. The approach, described in this chapter, provides a practical guideline that can be followed to carry out the experiments and data analysis.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas/química , Conformação Proteica
9.
Protein Sci ; 22(12): 1766-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115140

RESUMO

We have perturbed myosin nucleotide binding site with magnesium-, manganese-, or calcium-nucleotide complexes, using metal cation as a probe to examine the pathways of myosin ATPase in the presence of actin. We have used transient time-resolved FRET, myosin intrinsic fluorescence, fluorescence of pyrene labeled actin, combined with the steady state myosin ATPase activity measurements of previously characterized D.discoideum myosin construct A639C:K498C. We found that actin activation of myosin ATPase does not depend on metal cation, regardless of the cation-specific kinetics of nucleotide binding and dissociation. The rate limiting step of myosin ATPase depends on the metal cation. The rate of the recovery stroke and the reverse recovery stroke is directly proportional to the ionic radius of the cation. The rate of nucleotide release from myosin and actomyosin, and ATP binding to actomyosin depends on the cation coordination number.


Assuntos
Actinas/metabolismo , Actomiosina/química , Cátions/metabolismo , Metais/metabolismo , Miosinas/química , Actomiosina/metabolismo , Sequência de Bases , Sítios de Ligação , Cálcio , Domínio Catalítico , Cinética , Magnésio , Manganês , Miosinas/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais
10.
J Phys Chem B ; 116(46): 13655-62, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23121488

RESUMO

Pulsed electron paramagnetic resonance at the microwave K(a) band (~30 GHz) was used to study the coordination of adenosine nucleotides to Mn(2+) at the active site of myosin ATPase and in solution. We have found that the electron spin echo (ESE) field sweep, electron-nuclear double resonance (ENDOR) and ESE envelope modulation (ESEEM) techniques are not sufficiently specific for reliable differentiation between the solvated and myosin-bound Mn·nucleotide complexes. Therefore, to directly detect binding of the Mn·nucleotide to myosin, we used nonhydrolizable nucleotide analogs, site-directed spin labeling, and pulsed electron-electron double resonance to detect spin probe-manganese dipolar interaction. We found that under substoichiometric conditions, both Mn·AMPPNP and Mn·ADP·AlF(4) form a complex with myosin, and Mn·ADP does not form such a complex. This correlates well with the biological dissociation of Mg·ADP from myosin after the hydrolysis of ATP. The analysis of (31)P ENDOR spectra reveals that in Mn·AMPPNP, Mn·ATP, and Mn·ADP at myosin or in solution, the nucleotide is coordinated to Mn(2+) by two phosphate groups, whereas in Mn·ADP·AlF(4), only one phosphate group is coordinated. The observation of two phosphates and one nitrogen in the coordination sphere of Mn·ADP in solution by ESEEM spectroscopy suggests that a significant population of Mn ions is coordinated by two ADP molecules, one of which is coordinated by phosphates, and the other one, by a nitrogen atom. The developed approach will be generally useful for monitoring the metal-protein binding when such binding does not provide reliable spectroscopic signatures.


Assuntos
Complexos de Coordenação/química , Manganês/química , Miosinas/química , Nucleotídeos/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(5): 1891-6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245357

RESUMO

For many proteins, especially for molecular motors and other enzymes, the functional mechanisms remain unsolved due to a gap between static structural data and kinetics. We have filled this gap by detecting structure and kinetics simultaneously. This structural kinetics experiment is made possible by a new technique, (TR)(2)FRET (transient time-resolved FRET), which resolves protein structural states on the submillisecond timescale during the transient phase of a biochemical reaction. (TR)(2)FRET is accomplished with a fluorescence instrument that uses a pulsed laser and direct waveform recording to acquire an accurate subnanosecond time-resolved fluorescence decay every 0.1 ms after stopped flow. To apply this method to myosin, we labeled the force-generating region site specifically with two probes, mixed rapidly with ATP to initiate the recovery stroke, and measured the interprobe distance by (TR)(2)FRET with high resolution in both space and time. We found that the relay helix bends during the recovery stroke, most of which occurs before ATP is hydrolyzed, and two structural states (relay helix straight and bent) are resolved in each nucleotide-bound biochemical state. Thus the structural transition of the force-generating region of myosin is only loosely coupled to the ATPase reaction, with conformational selection driving the motor mechanism.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Miosinas/química , Trifosfato de Adenosina/química , Dictyostelium/química , Cinética , Conformação Proteica , Espectrometria de Fluorescência
12.
Proc Natl Acad Sci U S A ; 106(51): 21625-30, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19966224

RESUMO

We have used two complementary time-resolved spectroscopic techniques, dipolar electron-electron resonance and fluorescence resonance energy transfer to determine conformational changes in a single structural element of the myosin motor domain, the relay helix, before and after the recovery stroke. Two double-Cys mutants were labeled with optical probes or spin labels, and interprobe distances were determined. Both methods resolved two distinct structural states of myosin, corresponding to straight and bent conformations of the relay helix. The bent state was occupied only upon nucleotide addition, indicating that relay helix, like the entire myosin head, bends in the recovery stroke. However, saturation of myosin with nucleotide, producing a single biochemical state, did not produce a single structural state. Both straight and bent structural states of the relay helix were occupied when either ATP (ADP.BeF(x)) or ADP.P(i) (ADP.AlF(4)) analogs were bound at the active site. A greater population was found in the bent structural state when the posthydrolysis analog ADP.AlF(4) was bound. We conclude that the bending of the relay helix in the recovery stroke does not require ATP hydrolysis but is favored by it. A narrower interprobe distance distribution shows ordering of the relay helix, despite its bending, during the recovery stroke, providing further insight into the dynamics of this energy-transducing structural transition.


Assuntos
Miosinas/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação Proteica , Marcadores de Spin
13.
Proc Natl Acad Sci U S A ; 105(36): 13397-402, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18765799

RESUMO

We have engineered a mutant of Dictyostelium discoideum (Dicty) myosin II that contains the same fast-reacting "SH1" thiol as in muscle myosin, spin-labeled it, and performed electron paramagnetic resonance (EPR) to compare the structure of the force-generating region of the two myosins. Dicty myosin serves as a model system for muscle myosin because of greater ease of mutagenesis, expression, and crystallization. The catalytic domains of these myosins have nearly identical crystal structures in the apo state, but there are significant differences in ATPase kinetics, and there are no crystal structures of skeletal muscle myosin with bound nucleotides, so another structural technique is needed. Previous EPR studies, with a spin label attached to SH1 in muscle myosin, have resolved the key structural states of this region. Therefore, we have performed identical experiments on both myosins spin-labeled at equivalent sites. Spectra were identical for the two myosins in the apo and ADP-bound states. With bound ADP and phosphate analogs, (i) both proteins exhibit two resolved structural states (prepowerstroke, postpowerstroke) in a single biochemical state (defined by the bound nucleotide), and (ii) these structural states are essentially identical in the two myosins but (iii) are occupied to different extents as a function of the biochemical state. We conclude that (i) myosin structural and biochemical states do not have a one-to-one correspondence, and (ii) Dicty myosin can serve as a good analog for structural studies of muscle myosin only if differences in the coupling between biochemical and structural states are taken into account.


Assuntos
Músculos/química , Miosinas/química , Marcadores de Spin , Adenosina Trifosfatases/metabolismo , Animais , Dictyostelium , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Hidrólise , Espectrometria de Massas , Músculos/metabolismo , Miosinas/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Coelhos , Especificidade por Substrato , Temperatura , Termodinâmica
14.
Biophys J ; 95(1): 247-56, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18339764

RESUMO

Spin-labeling and multifrequency EPR spectroscopy were used to probe the dynamic local structure of skeletal myosin in the region of force generation. Subfragment 1 (S1) of rabbit skeletal myosin was labeled with an iodoacetamide spin label at C707 (SH1). X- and W-band EPR spectra were recorded for the apo state and in the presence of ADP and nucleotide analogs. EPR spectra were analyzed in terms of spin-label rotational motion within myosin by fitting them with simulated spectra. Two models were considered: rapid-limit oscillation (spectrum-dependent on the orientational distribution only) and slow restricted motion (spectrum-dependent on the rotational correlation time and the orientational distribution). The global analysis of spectra obtained at two microwave frequencies (9.4 GHz and 94 GHz) produced clear support for the second model and enabled detailed determination of rates and amplitudes of rotational motion and resolution of multiple conformational states. The apo biochemical state is well-described by a single structural state of myosin (M) with very restricted slow motion of the spin label. The ADP-bound biochemical state of myosin also reveals a single structural state (M*, shown previously to be the same as the post-powerstroke ATP-bound state), with less restricted slow motion of the spin label. In contrast, the extra resolution available at 94 GHz reveals that the EPR spectrum of the S1.ADP.V(i)-bound biochemical state of myosin, which presumably mimics the S1.ADP.P(i) state, is resolved clearly into three spectral components (structural states). One state is indistinguishable from that of the ADP-bound state (M*) and is characterized by moderate restriction and slow motion, with a mole fraction of 16%. The remaining 84% (M**) contains two additional components and is characterized by fast rotation about the x axis of the spin label. After analyzing EPR spectra, myosin ATPase activity, and available structural information for myosin II, we conclude that post-powerstroke and pre-powerstroke structural states (M* and M**) coexist in the S1.ADP.V(i) biochemical state. We propose that the pre-powerstroke state M** is characterized by two structural states that could reflect flexibility between the converter and N-terminal domains of myosin.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Químicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/ultraestrutura , Músculo Esquelético/química , Miosinas/química , Miosinas/ultraestrutura , Animais , Simulação por Computador , Elasticidade , Modelos Moleculares , Técnicas de Sonda Molecular , Movimento (Física) , Conformação Proteica , Coelhos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA