Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391026

RESUMO

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Assuntos
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transdução de Sinais
2.
Biochemistry (Mosc) ; 87(2): 179-190, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35508909

RESUMO

In this review, we discuss the mechanisms of generation of membrane-bound protons using different energy sources in model and natural systems. Analysis of these mechanisms revealed that all three types of reactions include the same principal stage, which is dissociation of electrically neutral Brønsted acids at the interface during transition from the hydrophobic phase to water with a low dielectric constant. Special attention is paid to the fact that in one of the analyzed model systems, membrane-bound protons provide energy for the reaction of ATP synthesis. Similar mechanism for the generation of membrane-bound protons has been found in natural membranes involved in oxidative phosphorylation, in particular, on the membranes of mitoplasts and mitochondria. The energy of oxidative reactions required for ATP synthesis, is stored at the intermediate stage not only in the form of transmembrane electrochemical potential of protons, but also and perhaps mostly, as protons attached to the inner mitochondrial membrane. The process of energy storage in mitochondria is linked to the transfer of protons that simultaneously perform two functions. Protons on the membrane surface carry free energy and, at the same time, act as substrates facilitating the movement of F1F0-ATP-synthase biological machine.


Assuntos
Prótons , Água , Trifosfato de Adenosina/metabolismo , Mitocôndrias/química , Membranas Mitocondriais/metabolismo , Água/química
3.
Prog Lipid Res ; 86: 101163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35351472

RESUMO

The 'standard' fluid-mosaic membrane model can provide a framework for the operation of the photosynthetic and respiratory electron transport systems, the generation of the proton motive force (pmf) and its utilization for ATP synthesis according to the chemiosmotic theory. However, this model, with the bilayer organization of all lipid molecules, assigns no function to non-bilayer lipids - while in recent years it became clear that the two fundamental energy transducing membranes of the biosphere, chloroplast thylakoid membranes (TMs) and inner mitochondrial membranes (IMMs), contain large amounts of non-bilayer (non-lamellar) lipid phases. In this review, we summarize our understanding on the role of non-lamellar phases in TMs and IMMs: (i) We propose that for these membrane vesicles the dynamic exchange model (DEM) provides a more suitable framework than the 'standard' model; DEM complements the 'standard' model by assuming the co-existence of bilayer and non-bilayer phases and their interactions, which contribute to the structural dynamics of the membrane systems and safe-guard the membranes' high protein:lipid ratios. (ii) Non-bilayer phases play pivotal roles in membrane fusion and intermembrane lipid exchanges - essential processes in the self-assembly of these highly folded intricate membranes. (iii) The photoprotective, lipocalin-like lumenal enzyme, violaxanthin de-epoxidase, in its active state requires the presence of non-bilayer lipid phase. (iv) Cardiotoxins, water-soluble polypeptides, induce non-bilayer phases in mitochondria. (v) ATP synthesis, in mammalian heart IMMs, is positively correlated with the amount of non-bilayer packed lipids with restricted mobility. (vi) The hypothesized sub-compartments, due to non-lamellar phases, are proposed to enhance the utilization of pmf and might contribute to the recently documented functional independence of individual cristae within the same mitochondrion. Further research is needed to identify and characterize the structural entities associated with the observed non-bilayer phases; and albeit fundamental questions remain to be elucidated, non-lamellar lipid phases should be considered on a par with the bilayer phase, with which they co-exist in functional TMs and IMMs.


Assuntos
Membranas Mitocondriais , Tilacoides , Trifosfato de Adenosina , Animais , Bicamadas Lipídicas , Lipídeos/química , Mamíferos , Tilacoides/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA