Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 34913, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734897

RESUMO

Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.


Assuntos
Bilirrubina/química , Muramidase/química , Peptidil Dipeptidase A/química , Animais , Anticorpos Monoclonais/química , Células CHO , Estudos de Casos e Controles , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Mutação , Peptídeos/química , Fenótipo , Ligação Proteica , Domínios Proteicos , Proteína C Associada a Surfactante Pulmonar , Sarcoidose/sangue , Ressonância de Plasmônio de Superfície
2.
J Dermatol Sci ; 83(1): 17-25, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27020408

RESUMO

BACKGROUND: Irradiated syngeneic wild-type mice developed the same neutrophilic dermatosis-like disease (NDLD) after adoptive transfer of bone marrow cells from Ptpn6(meb2/meb2) mutant mice. OBJECTIVE: To analyze differentially expressed genes in the bone marrow of mice with NDLD to gain insight into the role of Ptpn6 in myelopoietic bone marrow pathology, and the mechanisms by which Ptpn6 insufficiency in the hematopoietic cells can lead to the development of skin lesions. METHODS: As Ptpn6 is involved in a myriad of signaling pathways, we used a global approach with microarray technology for the first time to characterize changes in the bone marrow and skin of motheaten-type mice. RESULTS: A total number of 1,511 probe sets in the bone marrow showed at least two-fold changes with FDR <0.05, of which 256 probe sets had over four-fold changes. A group of 63 genes in the bone marrow of NDLD mice had more than a 4-fold change with FDR <0.0001. From 503 genes encoding proteins with ITIM motif that binds to Ptpn6, 109 were up-regulated and 83 were down-regulated. We found that genes encoding hematopoietic receptors, neutrophil chemoattractants, Toll-like receptors (Tlr1, Tlr2 and Tlr4) and C-type lectin innate immunity receptors (Clec4e, Clec4d, Clec4n, Clec4a2 and Clec4a3) were significantly up-regulated in both NDLD bone marrow and skin. The Il1b gene was also significantly overexpressed in skin samples, confirming the importance of the IL-1/TLR pathway in the development of early skin inflammation in NDLD mice. CONCLUSION: Our results suggest that innate immunity genes play a major role in development of neutrophilic dermatosis-like disease in mice.


Assuntos
Imunidade Inata/genética , Interleucina-1beta/metabolismo , Lectinas Tipo C/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Pioderma Gangrenoso/genética , Síndrome de Sweet/genética , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Mutação , Neutrófilos/imunologia , Pioderma Gangrenoso/imunologia , Transdução de Sinais , Pele/metabolismo , Síndrome de Sweet/imunologia , Receptores Toll-Like/metabolismo , Regulação para Cima
3.
PLoS One ; 9(2): e88001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505347

RESUMO

BACKGROUND: Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis. RESULTS: We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In silico analysis demonstrated S333W localized in the S1 pocket of the active site of the N domain with the bulky Trp adversely affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE. CONCLUSIONS AND SIGNIFICANCE: A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory tetrapeptide in blood and tissues), may confer protection against fibrosis.


Assuntos
Fibrose/genética , Mutação/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Peptídeos/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Cricetulus , Fibrose/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Peptídeos/metabolismo , Alinhamento de Sequência
4.
Am J Pathol ; 178(4): 1434-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21406173

RESUMO

We have found a B2 repeat insertion in the gene encoding protein tyrosine phosphatase nonreceptor type 6 (PTPN6) in a mouse that developed a skin disorder with clinical and histopathological features resembling those seen in human neutrophilic dermatoses. Neutrophilic dermatoses are a group of complex heterogeneous autoinflammatory diseases that all demonstrate excessive neutrophil infiltration of the skin. Therefore, we tested the cDNA and genomic DNA sequences of PTPN6 from patients with Sweet's syndrome (SW) and pyoderma gangrenosum and found numerous novel splice variants in different combinations. Isoforms resulting from deletions of exons 2, 5, 11, and 15 and retention of intron 1 or 5 were the most common in a patients with a familial case of SW, who had a neonatal onset of an inflammatory disorder with skin lesions and a biopsy specimen consistent with SW. These isoforms were associated with a heterozygous E441G mutation and a heterozygous 1.7-kbp deletion in the promoter region of the PTPN6 gene. Although full-length PTPN6 was detected in all other patients with either pyoderma gangrenosum or SW, it was always associated with splice variants: a partial deletion of exon 4 with the complete deletion of exon 5, alterations that were not detected in healthy controls. The defect in transcriptional regulation of the hematopoietic PTPN6 appears to be involved in the pathogenesis of certain subsets of the heterogeneous group of neutrophilic dermatoses.


Assuntos
Mutação , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Dermatopatias/genética , Adulto , Idoso , Processamento Alternativo , Sequência de Bases , Citocinas/metabolismo , Éxons , Feminino , Deleção de Genes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Am J Pathol ; 178(4): 1701-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21435452

RESUMO

We found a spontaneous autosomal mutation in a mouse leading to neutrophil infiltration with ulceration in the upper dermis of homozygous offspring. These animals had increased neutrophil numbers, associated with normal lymphocyte count, in peripheral blood and bone marrow, suggesting a myeloproliferative disorder; however, granulocyte precursor proliferation in bone marrow was actually reduced (because circulating neutrophils were less susceptible to apoptosis). Neutrophil infiltration of the skin and other organs and high serum levels of immunoglobulins and autoantibodies, cytokines, and acute-phase proteins were additional abnormalities, all of which could be reduced by high-dose corticosteroid treatment or neutrophil depletion by antibodies. Use of genome-wide screening localized the mutation within an 0.4-Mbp region on mouse chromosome 6. We identified insertion of a B2 element in exon 6 of the Ptpn6 gene (protein tyrosine phosphatase, non-receptor type 6; also known as Shp-1). This insertion involves amino acid substitutions that significantly reduced the enzyme activity in mice homozygous for the mutation. Disease onset was delayed, and the clinical phenotype was milder than the phenotypes of other Ptpn6-mutants described in motheaten (me, mev) mice; we designated this new genotype as Ptpn6(meB2/meB2) and the phenotype as meB2. This new phenotype encompasses an autoinflammatory disease showing similarities to many aspects of the so-called neutrophilic dermatoses, a heterogeneous group of skin diseases with unknown etiology in humans.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Dermatopatias/metabolismo , Corticosteroides/farmacologia , Animais , Autoanticorpos/química , Mapeamento Cromossômico , Homozigoto , Humanos , Imunoglobulinas/química , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação
6.
Arthritis Rheum ; 48(10): 2959-73, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14558103

RESUMO

OBJECTIVE: To study the immunologic function and determine the fine epitope structure of a synthetic peptide p135H ((2373)TTYKRRLQKRSSRHP) of the G3 domain of human cartilage proteoglycan (aggrecan), which contains a highly homologous sequence motif of the shared epitope (QKRAA), the most common sequence motif in HLA-DR4 alleles, which predispose humans to the development of rheumatoid arthritis (RA). METHODS: Synthetic p135 peptides with altered sequences were used for (hyper)immunization of arthritis-susceptible BALB/c mice and then challenged with a single dose of cartilage proteoglycan. Human p135 (p135H) and mouse p135 (p135M) synthetic peptides of the G3 domain of aggrecan were used to prime lymphocytes, which were then used for adoptive transfer of arthritis into "presensitized" SCID mice, determining cross-reactivity among p135 peptides and their analogous sequences, and generating T cell hybridomas. T cell hybridomas were also used for arthritis transfer into SCID mice and for characterizing the fine epitope structure of T cell receptor (TCR) and major histo-compatibility complex (MHC) binding sites of the immunogenic/arthritogenic p135H sequence. RESULTS: While p135H peptide-(hyper)immunized mice became sensitized, they developed arthritis only after injection of a single dose of cartilage proteoglycan aggrecan. An altered peptide sequence (p135H-AA) carrying the shared epitope motif (QKRAA) was as effective as the natural peptide p135H sequence for inducing arthritis. Mouse p135M-specific lymphocytes induced arthritis with a lower incidence, but synthetic peptides to Escherichia coli heat-shock protein (DnaJ) or HLA-DR4 allele (both having the shared epitope sequence with different flanking regions) were also positive. Fine epitope sequence recognition of an arthritogenic T cell hybridoma derived from p135H-primed lymphocyte population was determined. Interestingly, in the most central position, a basic amino acid triplet of p135H peptide was found to be the MHC-binding motif, whereas the flanking amino acids bound to the TCR. CONCLUSION: Peptide p135H, corresponding to the peptide sequence in the G3 domain of human cartilage proteoglycan aggrecan, is immunogenic/arthritogenic in BALB/c mice. Peptide p135H includes a highly homologous motif of the shared epitope, a sequence that is overrepresented in bacterial heat-shock proteins, envelope protein of human JC polyomavirus, and numerous HLA-DR4 alleles. Since the G3 domain of cartilage proteoglycan aggrecan with the p135 sequence is "lost" during the normal metabolic turnover of cartilage proteoglycan or in pathologic conditions, an antigenoriented T cell migration into joints of presensitized (susceptible) individuals may contribute to the organ-specificity of RA.


Assuntos
Artrite/imunologia , Cartilagem/imunologia , Epitopos de Linfócito T/imunologia , Proteínas da Matriz Extracelular , Proteoglicanas/imunologia , Transferência Adotiva , Agrecanas , Sequência de Aminoácidos , Substituição de Aminoácidos/imunologia , Animais , Artrite/patologia , Cartilagem/patologia , Reações Cruzadas , Epitopos , Feminino , Hibridomas , Imunização , Lectinas Tipo C , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteoglicanas/química , Linfócitos T/imunologia
7.
Arthritis Rheum ; 48(6): 1708-20, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12794840

RESUMO

OBJECTIVE: To explore the effect of sex on clinical and immunologic traits in major histocompatibility complex-matched (H-2d) F(2) hybrid mice with proteoglycan (PG)-induced arthritis and to identify how the quantitative trait locus (QTL) on the X chromosome influences the onset QTL of another chromosome. METHODS: (BALB/c x DBA/2)F(2) hybrid mice were immunized with cartilage PG, and a genome-wide linkage analysis was performed using >200 simple sequence-length polymorphic markers. The major clinical traits (susceptibility, onset, and severity) were assessed, and PG-specific T and B cell responses, and the production of proinflammatory and antiinflammatory cytokines (tumor necrosis factor alpha, interleukin-1 [IL-1], IL-6, interferon-gamma, IL-4, IL-10, and IL-12) were measured in 133 arthritic and 426 nonarthritic female and male F(2) hybrid mice. The major clinical and immunologic traits were linked to genetic loci, and potential linkages among these QTLs and the effect of sex were analyzed. RESULTS: Thirteen QTLs reported in previous studies were confirmed. Binary traits (susceptibility to arthritis) and disease onset were female specific and were identified on chromosomes 3, 7, 10, 11, 13, and X. QTLs for disease severity were mostly male specific and were located on chromosomes 1, 4, 5, 8, 14, 15, and 19. In addition, we identified 4 new QTLs for the onset of arthritis on chromosomes 3, 4, and 11, and 1 new QTL for severity on chromosome 14; all showed a strong gender association. A locus on the X chromosome interacted with a QTL on chromosome 10, and these 2 loci together seemed to control disease incidence and onset. Most of the clinical traits (QTLs) shared common regions with the immunologic traits and frequently showed a locus-locus interaction. CONCLUSION: Numerous immunologic QTLs overlap with clinical QTLs, thus providing information about possible mechanisms underlying QTL function. Disease susceptibility and onset showed predominant linkage with the female sex, under the control of a QTL on the X chromosome, while the severity QTLs were more strongly linked to the male sex.


Assuntos
Artrite Experimental/genética , Artrite Experimental/imunologia , Predisposição Genética para Doença , Locos de Características Quantitativas/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Membro Posterior , Articulações/patologia , Escore Lod , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Polimorfismo Genético , Fatores Sexuais , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA