Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626366

RESUMO

We present an interesting image of an intense PSMA-positive follicular thyroid carcinoma incidentally detected by [68Ga]Ga-PSMA-11 PET/CT in a 76-year-old man with biochemical recurrence of prostate cancer. Immunohistochemical staining demonstrated PSMA expression in the endothelial cells of tumor tissue. This interesting image should remind colleagues to consider malignant thyroid neoplasia in PSMA-positive thyroid lesions.

2.
J Otolaryngol Head Neck Surg ; 51(1): 21, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578359

RESUMO

BACKGROUND: Anti-PD1-Checkpoint inhibition (CI) is an established treatment of recurrent and/or metastatic head and neck cancer. A potential benefit from CI in early-stage disease that is usually treated by radiation or surgery has not been investigated so far and is currently not addressed in clinical trials. CASE PRESENTATION: A 58-year-old man was diagnosed with a cT2 supraglottic laryngeal cancer and a synchronous metastasized adenocarcinoma of the lung. As the patient refused any treatment of his laryngeal cancer, he received combined immune-chemotherapy according to the KEYNOTE-189 protocol. After 4 cycles of pembrolizumab/carboplatin/pemetrexed, the patient showed a complete remission of his laryngeal cancer with a clear shrinkage of the mediastinal and hilar lung cancer metastases. After 21 cycles of maintenance therapy, the lung adenocarcinoma shows a stable disease status with no signs of any residual or recurrent laryngeal cancer. CONCLUSIONS: Anti-PD1-CI may be a treatment option also for early-stage HNSCC with excellent functional outcome when established therapies are not available.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia
3.
Biomed Phys Eng Express ; 6(3): 037003, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33438682

RESUMO

Preclinical imaging and irradiation yields valuable insights into clinically relevant research topics. While complementary imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) can be combined within single devices, this is technically demanding and cost-intensive. Similarly, bedding and setup solutions are often specific to certain devices and research questions. We present a bedding platform for mice that is compatible with various preclinical imaging modalities (combined PET/MRI, cone beam CT) and irradiation with photons and protons. It consists of a 3D-printed bedding unit (acrylonitrile butadiene styrene, ABS) holding the animal and features an inhalation anesthesia mask, jaw fixation, ear pins, and immobilization for the hind leg. It can be embedded on mounting adaptors for multi-modal imaging and into a transport box (polymethyl methacrylate, PMMA) for experiments outside dedicated animal facilities while maintaining the animal's hygiene status. A vital support unit provides heating, inhalation anesthesia, and a respiration monitor. We dosimetrically evaluated used materials in order to assess their interaction with incident irradiation. Proof-of-concept multi-modal imaging protocols were used on phantoms and mice. The measured attenuation of the bedding unit for 40/60/80/200 kV X-rays was less than 3%. The measured stopping-power-ratio of ABS was 0.951, the combined water-equivalent thickness of bedding unit and transport box was 4.2 mm for proton energies of 150 MeV and 200 MeV. Proof-of-concept imaging showed no loss of image quality. Imaging data of individual mice from different imaging modalities could be aligned rigidly. The presented bed aims to provide a platform for experiments related to both multi-modal imaging and irradiation, thus offering the possibility for image-guided irradiation which relies on precise imaging and positioning. The usage as a self-contained, stand-alone unit outside dedicated animal facilities represents an advantage over setups designed for specific devices.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Radiometria , Radioterapia/métodos , Animais , Roupas de Cama, Mesa e Banho , Condutividade Elétrica , Desenho de Equipamento , Camundongos , Imagens de Fantasmas , Fótons , Terapia com Prótons/instrumentação , Radiografia , Radioterapia Guiada por Imagem/instrumentação , Raios X
4.
Acta Oncol ; 56(11): 1399-1405, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28835182

RESUMO

INTRODUCTION: As proton therapy becomes increasingly well established, there is a need for high-quality clinically relevant in vivo data to gain better insight into the radiobiological effects of proton irradiation on both healthy and tumor tissue. This requires the development of easily applicable setups that allow for efficient, fractionated, image-guided proton irradiation of small animals, the most widely used pre-clinical model. MATERIAL AND METHODS: Here, a method is proposed to perform dual-energy proton radiography for inline positioning verification and treatment planning. Dual-energy proton radiography exploits the differential enhancement of object features in two successively measured two-dimensional (2D) dose distributions at two different proton energies. The two raw images show structures that are dominated by energy absorption (absorption mode) or scattering (scattering mode) of protons in the object, respectively. Data post-processing allowed for the separation of both signal contributions in the respective images. The images were evaluated regarding recognizable object details and feasibility of rigid registration to acquired planar X-ray scans. RESULTS: Robust, automated rigid registration of proton radiography and planar X-ray images in scattering mode could be reliably achieved with the animal bedding unit used as registration landmark. Distinguishable external and internal features of the imaged mouse included the outer body contour, the skull with substructures, the lung, abdominal structures and the hind legs. Image analysis based on the combined information of both imaging modes allowed image enhancement and calculation of 2D water-equivalent path length (WEPL) maps of the object along the beam direction. DISCUSSION: Fractionated irradiation of exposed target volumes (e.g., subcutaneous tumor model or brain) can be realized with the suggested method being used for daily positioning and range determination. Robust registration of X-ray and proton radiography images allows for the irradiation of tumor entities that require conventional computed tomography (CT)-based planning, such as orthotopic lung or brain tumors, similar to conventional patient treatment.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Prótons , Radiografia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Animais , Relação Dose-Resposta à Radiação , Camundongos , Posicionamento do Paciente , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA