Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 7(7): e2300075, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178330

RESUMO

Inorganic nanomaterials have gained increasing attention in radiation oncology, owing to their radiation therapy enhancing properties. To accelerate candidate material selection and overcome the disconnect between conventional 2D cell culture and in vivo findings, screening platforms unifying high-throughput with physiologically relevant endpoint analysis based on 3D in vitro models are promising. Here, a 3D tumor spheroid co-culture model based on cancerous and healthy human cells is presented for the concurrent assessment of radio-enhancement efficacy, toxicity, and intratissural biodistribution with full ultrastructural context of radioenhancer candidate materials. Its potential for rapid candidate materials screening is showcased based on the example of nano-sized metal-organic frameworks (nMOFs) and direct benchmarking against gold nanoparticles (the current "gold standard"). Dose enhancement factors (DEFs) ranging between 1.4 and 1.8 are measured for Hf-, Ti-, TiZr-, and Au-based materials in 3D tissues and are overall lower than in 2D cell cultures, where DEF values exceeding 2 are found. In summary, the presented co-cultured tumor spheroid-healthy fibroblast model with tissue-like characteristics may serve as high-throughput platform enabling rapid, cell line-specific endpoint analysis for therapeutic efficacy and toxicity assessment, as well as accelerated radio-enhancer candidate screening.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Neoplasias , Humanos , Técnicas de Cocultura , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Ouro/toxicidade , Ouro/uso terapêutico , Distribuição Tecidual , Esferoides Celulares , Nanopartículas Metálicas/toxicidade , Neoplasias/radioterapia
2.
Biomater Sci ; 10(22): 6558-6569, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36215095

RESUMO

Nano-sized metal organic frameworks (nanoMOFs) have gained increasing importance in biomedicine due to their tunable properties. In addition to their use as carriers in drug delivery, nanoMOFs containing hafnium have been successfully employed as radio-enhancers augmenting damage caused by X-ray irradiation in tumor tissue. While results are encouraging, there is little mechanistic understanding available, and the biological fate of these radio-enhancer nanoparticles remains largely unexplored. Here, we synthesized a selection of group IV metal-based (Hf, Ti, Ti/Zr) nanoMOFs and investigated their cell compatibility and radio-enhancement performance in direct comparison to the corresponding metal oxides. We report surprising radio-enhancement performance of Ti-containing nanoMOFs reaching dose modifying ratios of 3.84 in human sarcoma cells and no relevant dose modification in healthy human fibroblasts. These Ti-based nanoMOFs even outperformed previously reported Hf-based nanoMOFs as well as equimolar group IV metal oxides in direct benchmarking experiments. While group IV nanoMOFs were well-tolerated by cells in the absence of irradiation, the nanoMOFs partially dissolved in lysosomal buffer conditions showing distinctly different chemical stability compared to widely researched group IV oxides (TiO2, ZrO2, and HfO2). Taken together, this study illustrates the promising potential of Ti-based nanoMOFs for radio-enhancement and provides insight into the intracellular fate and stability of group IV nanoMOFs.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Humanos , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Óxidos
3.
Eur J Pharm Biopharm ; 118: 56-61, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28396279

RESUMO

Extracellular vesicles (EVs) have gained increasing attention as novel disease biomarkers and as promising therapeutic agents. These cell-derived, phospholipid-based particles are present in many - if not all - physiological fluids. They have been shown to govern several physiological processes, such as cell-cell communication, but also to be involved in pathological conditions, for example tumour progression. In infectious diseases, EVs have been shown to induce host immune responses and to mediate transfer of virulence or resistance factors. Here, we discuss recent developments in using EVs as diagnostic tools for infectious diseases, the development of EV-based vaccines and the use of EVs as potential anti-infective entity. We illustrate how EV-based strategies could open a viable new avenue to tackle current challenges in the field of infections, including barrier penetration and growing resistance to antimicrobials.


Assuntos
Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Exossomos/imunologia , Exossomos/metabolismo , Vacinas/uso terapêutico , Bactérias/imunologia , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biofilmes , Comunicação Celular/fisiologia , Doenças Transmissíveis/microbiologia , Humanos , Vacinas/imunologia , Vacinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA