Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Physiol ; 189(1): 49-65, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139220

RESUMO

The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC). To reveal whether it is possible to suppress this marked phenotype, we exploited the power of a forward genetic screen. Absence of a so far uncharacterized member of the HaloAcid Dehalogenase (HAD)-like hydrolase family strongly suppressed the dwarf phenotype of er-ant1 plants. Localization studies suggested that the corresponding protein locates to chloroplasts, and activity assays showed that the enzyme dephosphorylates, with high substrate affinity, the B6 vitamer pyridoxal 5'-phosphate (PLP). Additional physiological experiments identified imbalances in vitamin B6 homeostasis in er-ant1 mutants. Our data suggest that impaired chloroplast metabolism, but not decreased GDC activity, causes the er-ant1 mutant dwarf phenotype. We present a hypothesis, setting transport of PLP by ER-ANT1 and chloroplastic PLP dephosphorylation in the cellular context. With the identification of this HAD-type PLP phosphatase, we also provide insight into B6 vitamer homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfato de Piridoxal/metabolismo
2.
BMC Genomics ; 23(1): 144, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35176993

RESUMO

BACKGROUND: DNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. RESULTS: In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. CONCLUSION: Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes.


Assuntos
Beta vulgaris , Beta vulgaris/genética , Metilação de DNA , Epigênese Genética , Expressão Gênica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Açúcares/metabolismo
3.
Plant J ; 106(1): 23-40, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368770

RESUMO

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Assuntos
Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Camellia/genética , Camellia/metabolismo , Camellia/fisiologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Folhas de Planta/genética , Biologia de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
4.
J Exp Bot ; 71(16): 4930-4943, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32361766

RESUMO

Most cellular sucrose is present in the cytosol and vacuoles of plant cells; however, little is known about the effect of this sucrose compartmentation on plant properties. Here, we examined the effects of altered intracellular sucrose compartmentation in Arabidopsis thaliana leaves by heterologously expressing the sugar beet (Beta vulgaris) vacuolar sucrose loader BvTST2.1 and by generating lines with reduced vacuolar invertase activity (amiR vi1-2). Heterologous expression of BvTST2.1 led to increased monosaccharide levels in leaves, whereas sucrose levels remained constant, indicating that vacuolar invertase activity in mesophyll vacuoles exceeds sucrose uptake. This notion was supported by analysis of tobacco (Nicotiana benthamiana) leaves transiently expressing BvTST2.1 and the invertase inhibitor NbVIF. However, sucrose levels were strongly elevated in leaf extracts from amiR vi1-2 lines, and experiments confirmed that sucrose accumulated in the corresponding vacuoles. The amiR vi1-2 lines exhibited impaired early development and reduced seed weight. When germinated in the dark, amiR vi1-2 seedlings were less able to convert sucrose into monosaccharides than the wild type. Cold temperatures strongly down-regulated both VI genes, but the amiR vi1-2 lines showed normal frost tolerance. These observations indicate that increased vacuolar sucrose levels fully compensate for the effects of low monosaccharide concentrations on frost tolerance.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Desenvolvimento Vegetal , Sementes/metabolismo , Sacarose , Vacúolos/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
5.
Plant Cell ; 32(5): 1727-1748, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156687

RESUMO

The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Although the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that a member of the nitrate/peptide transporter family is required for the accumulation and transport of pollen-specific flavonol 3-o-sophorosides, characterized by a glycosidic ß-1,2-linkage, to the pollen surface of Arabidopsis (Arabidopsis thaliana). Ectopic, transient expression in Nicotiana benthamiana epidermal leaf cells demonstrated localization of this flavonol sophoroside transporter (FST1) at the plasmalemma when fused to green fluorescent protein (GFP). We also confirmed the tapetum-specific expression of FST1 by GFP reporter lines driven by the FST1 promoter. In vitro characterization of FST1 activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1 insertion mutant by complementation with an FST1 genomic fragment restored the accumulation of flavonol glycosides in pollen grains to wild-type levels, corroborating the requirement of FST1 for transport of flavonol-3-o-sophorosides from the tapetum to the pollen surface.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonóis/metabolismo , Glicosídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pólen/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Mutação/genética , Filogenia , Epiderme Vegetal/citologia , Extratos Vegetais/química , Pólen/ultraestrutura , Regiões Promotoras Genéticas/genética , Propanóis/química , Propanóis/metabolismo , Frações Subcelulares/metabolismo , Sobrevivência de Tecidos , Transcrição Gênica , Raios Ultravioleta
6.
Nat Commun ; 9(1): 3489, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154480

RESUMO

To fulfill its role in protein biogenesis, the endoplasmic reticulum (ER) depends on the Hsp70-type molecular chaperone BiP, which requires a constant ATP supply. However, the carrier that catalyzes ATP uptake into the ER was unknown. Here, we report that our screen of gene expression datasets for member(s) of the family of solute carriers that are co-expressed with BiP and are ER membrane proteins identifies SLC35B1 as a potential candidate. Heterologous expression of SLC35B1 in E. coli reveals that SLC35B1 is highly specific for ATP and ADP and acts in antiport mode. Moreover, depletion of SLC35B1 from HeLa cells reduces ER ATP levels and, as a consequence, BiP activity. Thus, human SLC35B1 may provide ATP to the ER and was named AXER (ATP/ADP exchanger in the ER membrane). Furthermore, we propose an ER to cytosol low energy response regulatory axis (termed lowER) that appears as central for maintaining ER ATP supply.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
7.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938800

RESUMO

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Nicotiana/enzimologia , Salinidade , Cloreto de Sódio/farmacologia , Vacúolos/enzimologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Bombas de Próton/metabolismo , Prótons , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
J Biol Chem ; 293(11): 4180-4190, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29367340

RESUMO

The exact transport characteristics of the vacuolar dicarboxylate transporter tDT from Arabidopsis are elusive. To overcome this limitation, we combined a range of experimental approaches comprising generation/analysis of tDT overexpressors, 13CO2 feeding and quantification of 13C enrichment, functional characterization of tDT in proteoliposomes, and electrophysiological studies on vacuoles. tdt knockout plants showed decreased malate and increased citrate concentrations in leaves during the diurnal light-dark rhythm and after onset of drought, when compared with wildtypes. Interestingly, under the latter two conditions, tDT overexpressors exhibited malate and citrate levels opposite to tdt knockout plants. Highly purified tDT protein transports malate and citrate in a 1:1 antiport mode. The apparent affinity for malate decreased with decreasing pH, whereas citrate affinity increased. This observation indicates that tDT exhibits a preference for dianion substrates, which is supported by electrophysiological analysis on intact vacuoles. tDT also accepts fumarate and succinate as substrates, but not α-ketoglutarate, gluconate, sulfate, or phosphate. Taking tDT as an example, we demonstrated that it is possible to reconstitute a vacuolar metabolite transporter functionally in proteoliposomes. The displayed, so far unknown counterexchange properties of tDT now explain the frequently observed reciprocal concentration changes of malate and citrate in leaves from various plant species. tDT from Arabidopsis is the first member of the well-known and widely present SLC13 group of carrier proteins, exhibiting an antiport mode of transport.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Cítrico/metabolismo , Malatos/metabolismo , Transportadores de Ânions Orgânicos/isolamento & purificação , Transportadores de Ânions Orgânicos/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Transportadores de Ânions Orgânicos/genética
9.
BMC Plant Biol ; 15: 238, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26444389

RESUMO

BACKGROUND: Adenine nucleotide/phosphate carriers (APCs) from mammals and yeast are commonly known to adapt the mitochondrial adenine nucleotide pool in accordance to cellular demands. They catalyze adenine nucleotide--particularly ATP-Mg--and phosphate exchange and their activity is regulated by calcium. Our current knowledge about corresponding proteins from plants is comparably limited. Recently, the three putative APCs from Arabidopsis thaliana were shown to restore the specific growth phenotype of APC yeast loss-of-function mutants and to interact with calcium via their N-terminal EF--hand motifs in vitro. In this study, we performed biochemical characterization of all three APC isoforms from A. thaliana to gain further insights into their functional properties. RESULTS: Recombinant plant APCs were functionally reconstituted into liposomes and their biochemical characteristics were determined by transport measurements using radiolabeled substrates. All three plant APCs were capable of ATP, ADP and phosphate exchange, however, high preference for ATP-Mg, as shown for orthologous carriers, was not detectable. By contrast, the obtained data suggest that in the liposomal system the plant APCs rather favor ATP-Ca as substrate. Moreover, investigation of a representative mutant APC protein revealed that the observed calcium effects on ATP transport did not primarily/essentially involve Ca(2+)-binding to the EF-hand motifs in the N-terminal domain of the carrier. CONCLUSION: Biochemical characteristics suggest that plant APCs can mediate net transport of adenine nucleotides and hence, like their pendants from animals and yeast, might be involved in the alteration of the mitochondrial adenine nucleotide pool. Although, ATP-Ca was identified as an apparent import substrate of plant APCs in vitro it is arguable whether ATP-Ca formation and thus the corresponding transport can take place in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Difosfato de Adenosina/metabolismo , Antiporters/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Transporte Biológico/efeitos dos fármacos , Cátions Bivalentes/farmacologia , Ácido Egtázico/farmacologia , Humanos , Magnésio/farmacologia , Proteínas de Transporte de Fosfato/química , Estrutura Terciária de Proteína , Recombinação Genética/genética , Fatores de Tempo
10.
Electron. j. biotechnol ; 16(6): 2-2, Nov. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-696543

RESUMO

Background: Potato (Solanum tuberosum) is one of the most important sources of carbohydrates in human diet. Because of its high carbohydrate levels it recently has also received attention in biohydrogen production. To exploit the natural variation of potato with respect to resistance to major diseases, carbohydrate levels and composition, and capacity for biohydrogen production we analyzed tubers of native, improved, and genetically modified potatoes, and two other tuberous species for their glucose, fructose, sucrose, and starch content. Results: High-starch potato varieties were evaluated for their potential for Caldicellulosiruptor saccharolyticus-mediated biohydrogen production with Desirée and Rosita varieties delivering the highest biohydrogen amounts. Native line Vega1 and improved line Yagana were both immune to two isolates (A291, A287) of Phytophthora infestans. Conclusions: Our data demonstrate that native potato varieties might have great potential for further improving the multifaceted use of potato in worldwide food and biohydrogen production.


Assuntos
Solanum tuberosum/metabolismo , Solanum tuberosum/química , Amido/análise , Carboidratos/análise , Cromatografia por Troca Iônica , Açúcares/análise , Resistência à Doença , Caldicellulosiruptor , Hidrogênio/análise
11.
Plant Cell ; 25(7): 2647-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23860249

RESUMO

The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO(2) concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.


Assuntos
Trifosfato de Adenosina/metabolismo , Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Antiporters/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Expressão Gênica/efeitos da radiação , Glicina/efeitos dos fármacos , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Immunoblotting , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Consumo de Oxigênio/genética , Consumo de Oxigênio/efeitos da radiação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Trends Plant Sci ; 16(9): 507-15, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21622019

RESUMO

Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.


Assuntos
Nucleotídeos de Adenina/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Diatomáceas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Potencial da Membrana Mitocondrial , Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Especificidade por Substrato
13.
Plant Cell ; 23(5): 1932-44, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21540435

RESUMO

ATP acts as an extracellular signal molecule in plants. However, the nature of the mechanisms that export this compound into the apoplast are under debate. We identified the protein PM-ANT1 as a candidate transporter able to mediate ATP export. PM-ANT1 joins the mitochondrial carrier family, lacks an N-terminal amino acid extension required for organelle localization, and locates to the plasma membrane. Recombinant PM-ANT1 transports ATP, and the gene is substantially expressed in mature pollen grains. Artificial microRNA (amiRNA) mutants show reduced silique length and less seeds per silique but increased seed weight associated with unchanged pollen viability. Anthers from amiRNA mutants exhibited a normal early development, but stomium breakage is inhibited, leading to impaired anther dehiscence. This results in reduced self-pollination and thus decreased fertilization efficiency. amiRNA pollen grains showed increased intracellular ATP levels but decreased extracellular ATP levels. The latter effects are in line with transport properties of recombinant PM-ANT1, supporting in planta that functional PM-ANT1 resides in the plasma membrane and concur with the PM-ANT1 expression pattern. We assume that PM-ANT1 contributes to ATP export during pollen maturation. ATP export may serve as an extracellular signal required for anther dehiscence and is a novel factor critical for pollination and autogamy.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Flores/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/análise , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , MicroRNAs , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , RNA de Plantas/genética , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Transdução de Sinais
14.
Mol Plant Microbe Interact ; 23(12): 1584-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21039274

RESUMO

When grown under short-day conditions at low light, leaves of an Arabidopsis thaliana (accession Col-0) mutant with defects in the two genes encoding plastid ATP/ADP antiporters (so-called ntt1-2 null mutants) display a variety of physiological changes. These include the formation of necrotic lesions and the accumulation of hydrogen peroxide in the leaves. Here, we show that, under short-day conditions, leaves of the ntt1-2 mutant display enhanced resistance to Hyaloperonospora arabidopsidis, Botrytis cinerea, and Pseudomonas syringae pv. tomato DC3000. Resistance to these pathogens was associated with constitutively elevated levels of the plant hormone salicylic acid and, eventually, jasmonic acid, and constitutive or primed activation after pathogen attack of various defense genes that are dependent on these hormones. In addition, the antagonistic crosstalk between the salicylic acid and jasmonic acid signaling pathways seems to be affected in ntt1-2. Because the enhanced resistance of ntt1-2 to H. arabidopsidis was not seen when the mutant was grown under long-day conditions, our findings argue that nocturnal ATP import into chloroplasts is crucial to keep A. thaliana from runaway activation of pathogen resistance.


Assuntos
Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Transporte Biológico , Ritmo Circadiano , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Mutação , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Transdução de Sinais
15.
Plant Cell ; 21(3): 876-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19293370

RESUMO

Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding K(m) values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter beta-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , N-Glicosil Hidrolases/metabolismo , Uridina/metabolismo , Sequência de Aminoácidos , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Teste de Complementação Genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , N-Glicosil Hidrolases/genética , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
16.
Biochim Biophys Acta ; 1793(1): 71-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18522807

RESUMO

The intermembrane space of mitochondria and the thylakoid lumen of chloroplasts are evolutionary descendents of the periplasmic space of bacteria. Presumably due to their common ancestry, the active oxidation of cysteinyl thiols is used in these three compartments in order to stabilize protein folding or to regulate protein function. In contrast, compartments of the eukaryotic cell which developed from the bacterial cytosol maintain cysteine residues largely reduced. Whereas the oxidizing machinery of bacteria is well characterized, that of mitochondria was only recently discovered and that of thylakoids still awaits to be identified. In mitochondria, protein oxidation is mediated by the sulfhydryl oxidase Erv1 which is highly conserved among eukaryotes. Erv1 oxidizes its substrate protein Mia40 which serves as an import receptor for proteins destined for the intermembrane space. This review summarizes the current knowledge on the mitochondrial disulfide relay system and compares its features to those of the periplasm and the thylakoid lumen. Although the sulfhydryl oxidases in the intermembrane space, Erv1, and the bacterial periplasm, DsbA-DsbB, share key structural features their primary sequence is not related and the evolutionary origin of Erv1 is unclear. On the basis of phylogenetic analyses of Erv1 sequences we propose that the mitochondrial oxidation machinery originated from a lateral gene transfer from flavobacteria-like prokaryotes early in eukaryotic evolution.


Assuntos
Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Oxirredução , Oxirredutases/química , Periplasma/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Tilacoides/metabolismo
17.
Plant Cell ; 20(12): 3241-57, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19073763

RESUMO

Several recent proteomic studies of plant peroxisomes indicate that the peroxisomal matrix harbors multiple ATP-dependent enzymes and chaperones. However, it is unknown whether plant peroxisomes are able to produce ATP by substrate-level phosphorylation or whether external ATP fuels the energy-dependent reactions within peroxisomes. The existence of transport proteins that supply plant peroxisomes with energy for fatty acid oxidation and other ATP-dependent processes has not previously been demonstrated. Here, we describe two Arabidopsis thaliana genes that encode peroxisomal adenine nucleotide carriers, PNC1 and PNC2. Both proteins, when fused to enhanced yellow fluorescent protein, are targeted to peroxisomes. Complementation of a yeast mutant deficient in peroxisomal ATP import and in vitro transport assays using recombinant transporter proteins revealed that PNC1 and PNC2 catalyze the counterexchange of ATP with ADP or AMP. Transgenic Arabidopsis lines repressing both PNC genes were generated using ethanol-inducible RNA interference. A detailed analysis of these plants showed that an impaired peroxisomal ATP import inhibits fatty acid breakdown during early seedling growth and other beta-oxidation reactions, such as auxin biosynthesis. We show conclusively that PNC1 and PNC2 are essential for supplying peroxisomes with ATP, indicating that no other ATP generating systems exist inside plant peroxisomes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Peroxissomos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Teste de Complementação Genética , Metabolismo dos Lipídeos/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Homologia de Sequência de Aminoácidos
18.
Plant J ; 56(1): 51-63, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18564385

RESUMO

The Arabidopsis genome contains a gene (Atbt1) encoding a highly hydrophobic membrane protein of the mitochondrial carrier family, with six predicted transmembrane domains, and showing substantial structural similarity to Brittle1 proteins from maize and potato. We demonstrate that AtBT1 transports AMP, ADP and ATP (but not ADP-glucose), shows a unidirectional mode of transport, and locates to the plastidial membrane and not to the ER as previously proposed. Analysis using an Atbt1 promoter-GUS construct revealed substantial gene expression in rapidly growing root tips and maturating or germinating pollen. Survival of homozygous Atbt1::T-DNA mutants is very limited, and those that do survive produce non-fertile seeds. These observations indicate that no other carrier protein or metabolic mechanism can compensate for the loss of this transporter. Atbt1 RNAi dosage mutants show substantially retarded growth, adenylate levels similar to those of wild-type plants, increased glutamine contents and unchanged starch levels. Interestingly, the growth retardation of Atbt1 RNAi mutant plants was circumvented by adenosine feeding, and was accompanied by increased adenylate levels. Further observations showed the presence of a functional nucleotide salvage pathway in Atbt1 RNAi mutants. In summary, our data indicate that AtBT1 is a plastidial nucleotide uniport carrier protein that is strictly required to export newly synthesized adenylates into the cytosol.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Plastídeos/genética , Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico Ativo , DNA Bacteriano/genética , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Mutagênese Insercional , Proteínas de Transporte de Nucleotídeos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Plant Biotechnol J ; 6(5): 453-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18363632

RESUMO

Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.


Assuntos
Carbono/metabolismo , Plastídeos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Amilose/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/enzimologia , Amido/química , Sintase do Amido/metabolismo
20.
Plant Cell ; 20(2): 438-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18296626

RESUMO

Many metabolic reactions in the endoplasmic reticulum (ER) require high levels of energy in the form of ATP, which is important for cell viability. Here, we report on an adenine nucleotide transporter residing in the ER membranes of Arabidopsis thaliana (ER-ANT1). Functional integration of ER-ANT1 in the cytoplasmic membrane of intact Escherichia coli cells reveals a high specificity for an ATP/ADP antiport. Immunodetection in transgenic ER-ANT1-C-MYC-tag Arabidopsis plants and immunogold labeling of wild-type pollen grain tissue using a peptide-specific antiserum reveal the localization of this carrier in ER membranes. Transgenic ER-ANT1-promoter-beta-glucuronidase Arabidopsis lines show high expression in ER-active tissues (i.e., pollen, seeds, root tips, apical meristems, or vascular bundles). Two independent ER-ANT1 Arabidopsis knockout lines indicate a high physiological relevance of ER-ANT1 for ATP transport into the plant ER (e.g., disruption of ER-ANT1 results in a drastic retardation of plant growth and impaired root and seed development). In these ER-ANT1 knockout lines, the expression levels of several genes encoding ER proteins that are dependent on a sufficient ATP supply (i.e., BiP [for luminal binding protein] chaperones, calreticulin chaperones, Ca2+-dependent protein kinase, and SEC61) are substantially decreased.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Transporte Biológico , Retículo Endoplasmático/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA