Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orofac Orthop ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093345

RESUMO

AIMS: To investigate the effect of tumor necrosis factor (TNF) on the growth of human periodontal ligament (PDL) cells, their osteogenic differentiation and modulation of their matrix secretion in vitro. METHODS: The influence of 10 ng/ml TNF on proliferation and metabolic activity of PDL cells was analyzed by cell counting (DAPI [4',6-diamidino-2-phenylindole] staining) and the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. In addition, cells were cultured under control conditions and osteogenic conditions (media containing 10 mM ß-glycerophosphate). Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALP), collagen type I alpha 1 chain (COL1A1), osteoprotegerin (OPG), and osteopontin (OPN) was performed after 7 and 14 days of cultivation. Calcium deposits were stained with alizarin red. RESULTS: Our studies showed that 10 ng/ml TNF did not affect the survival and metabolic activity of PDL cells. Quantitative expression analysis revealed that long-term cultures with TNF impaired osteogenic cell fate at early and late developmental stages. Furthermore, TNF significantly reduced matrix secretion in PDL cells. CONCLUSION: The present data confirm TNF as a regulatory factor of proinflammatory remodeling that influences the differentiation behavior but not the metabolism and cell proliferation of the periodontium. Therefore, TNF represents an interesting target for the regulation of orthodontic remodeling processes in the periodontium.

2.
J Periodontol ; 95(7): 662-672, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708919

RESUMO

BACKGROUND: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS: Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS: Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION: The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.


Assuntos
Neovascularização Fisiológica , Ligamento Periodontal , Fator A de Crescimento do Endotélio Vascular , Humanos , Projetos Piloto , Ligamento Periodontal/citologia , Ligamento Periodontal/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Células-Tronco Mesenquimais , Maxila , Mandíbula , Proliferação de Células , Células-Tronco/fisiologia , Masculino , Diferenciação Celular , Adulto , Feminino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Células Cultivadas , Adulto Jovem
3.
ACS Appl Mater Interfaces ; 16(1): 30-43, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150508

RESUMO

Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation. Recently, our group developed a thermoresponsive N-ethyl acrylamide/N-isopropylacrylamide (NIPAM/NEAM) hydrogel supplemented with gold nanorods that are able to convert near-infrared light into heat. Using light pulses allows for local hydrogel collapse and swelling with physiologically relevant force and frequency. In this study, MSCs are cultured on this hydrogel system with a patterned surface and exposed to intermittent or continuous actuation of the hydrogel for 3 days to study the effect of actuation on MSC differentiation. First, cells are harvested from the bone marrow of three donors and tested for their MSC phenotype, meeting the following criteria: the harvested cells are adherent and demonstrate a fibroblast-like bipolar morphology. They lack the expression of CD34 and CD45 but do express CD73, CD90, and CD105. Additionally, their differentiation potential into adipogenic, chondrogenic, and osteogenic lineages is validated by the addition of standardized differentiation media. Next, MSCs are exposed to intermittent or continuous actuation, which leads to a significantly enhanced cell spreading compared to nonactuated cells. Moreover, actuation results in nuclear translocation of Runt-related transcription factor 2 and the Yes-associated protein. Together, these results indicate that cyclic mechanical stimulation on a soft, ridged substrate modulates the MSC fate commitment in the direction of osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Adulto , Humanos , Osteogênese/fisiologia , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Células Cultivadas , Diferenciação Celular/fisiologia
4.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000021

RESUMO

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/genética , Toxinas Urêmicas , Remodelação Ventricular , Insuficiência Cardíaca/etiologia
5.
Sci Rep ; 13(1): 12475, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528137

RESUMO

Therapies using dental pulp stem cells (DPSCs) or stem cell-derived extracellular vesicles (EVs) have shown promising applications for bone tissue engineering. This in vitro experiment evaluated the joint osteogenic capability of DPSCs and EVs on alloplastic (maxresorp), allogeneic (maxgraft), and xenogeneic (cerabone) bone grafts. We hypothesize that osteogenic differentiation and the proliferation of human DPSCs vary between bone grafts and are favorable under the influence of EVs. DPSCs were obtained from human wisdom teeth, and EVs derived from DPSCs were isolated from cell culture medium. DPSCs were seeded on alloplastic, allogeneic, and xenogeneic bone graft substitutes for control, and the same scaffolds were administered with EVs in further groups. The cellular uptake of EVs into DPSC cells was assessed by confocal laser scanning microscopy. Cell vitality staining and calcein acetoxymethyl ester staining were used to evaluate cell attachment and proliferation. Cell morphology was determined using scanning electron microscopy, and osteogenic differentiation was explored by alkaline phosphatase and Alizarin red staining. Within the limitations of an in vitro study without pathologies, the results suggest that especially the use of xenogeneic bone graft substitutes with DPSCS and EVs may represent a promising treatment approach for alveolar bone defects.


Assuntos
Substitutos Ósseos , Vesículas Extracelulares , Transplante de Células-Tronco Hematopoéticas , Humanos , Osteogênese , Células Cultivadas , Diferenciação Celular , Polpa Dentária , Proliferação de Células
6.
BMC Oral Health ; 23(1): 56, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721114

RESUMO

BACKGROUND: A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes. The present in vitro study investigates the osteogenic capability of DPSCs on alloplastic (biphasic calcium phosphate [BCP]), allogeneic (freeze-dried bone allografts [FDBAs]), and xenogeneic (deproteinized bovine bone mineral [DBBM]) bone grafts. METHODS: Human DPSCs were seeded on 0.5 mg/ml, 1 mg/ml, and 2 mg/ml of BCP, FDBA, and DBBM to evaluate the optimal cell growth and cytotoxicity. Scaffolds and cell morphologies were analyzed by scanning electron microscopy (SEM). Calcein AM and cytoskeleton staining were performed to determine cell attachment and proliferation. Alkaline phosphatase (ALP) and osteogenesis-related genes expressions was used to investigate initial osteogenic differentiation. RESULTS: Cytotoxicity assays showed that most viable DPSCs were present at a scaffold concentration of 0.5 mg/ml. The DPSCs on the DBBM scaffold demonstrated a significantly higher proliferation rate of 214.25 ± 16.17 (p < 0.001) cells, enhancing ALP activity level and upregulating of osteogenesis-related genes compared with other two scaffolds. CONCLUSION: DBBP scaffold led to extremely high cell viability, but also promoted proliferation, attachment, and enhanced the osteogenic differentiation capacity of DPSCs, which hold great potential for bone regeneration treatment; however, further studies are necessary.


Assuntos
Substitutos Ósseos , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Bovinos , Osteogênese , Polpa Dentária , Regeneração Óssea
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897640

RESUMO

Mechanical compression simulating orthodontic tooth movement in in vitro models induces pro-inflammatory cytokine expression in periodontal ligament (PDL) cells. Our previous work shows that TLR4 is involved in this process. Here, primary PDL cells are isolated and characterized to better understand the cell signaling downstream of key molecules involved in the process of sterile inflammation via TLR4. The TLR4 monoclonal blocking antibody significantly reverses the upregulation of phospho-AKT, caused by compressive force, to levels comparable to controls by inhibition of TLR4. Phospho-ERK and phospho-p38 are also modulated in the short term via TLR4. Additionally, moderate compressive forces of 2 g/cm2, a gold standard for static compressive mechanical stimulation, are not able to induce translocation of Nf-kB and phospho-ERK into the nucleus. Accordingly, we demonstrated for the first time that TLR4 is also one of the triggers for signal transduction under compressive force. The TLR4, one of the pattern recognition receptors, is involved through its specific molecular structures on damaged cells during mechanical stress. Our findings provide the basis for further research on TLR4 in the modulation of sterile inflammation during orthodontic therapy and periodontal remodeling.


Assuntos
Ligamento Periodontal , Receptor 4 Toll-Like , Técnicas de Movimentação Dentária , Células Cultivadas , Humanos , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligamento Periodontal/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Mecânico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Exp Hematol ; 110: 28-33, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341805

RESUMO

Within the heterogenous pool of bone marrow stromal cells, mesenchymal stromal cells (MSCs) are of particular interest because of their hematopoiesis-supporting capacities, contribution to disease progression, therapy resistance, and leukemic initiation. Cultured bone marrow-derived stromal cells (cBMSCs) are used for in vitro modeling of hematopoiesis-stroma interactions, validation of disease mechanisms, and screening for therapeutic targets. Here, we place cBMSCs (mouse and human) in a bone marrow tissue context by systematically comparing the transcriptome of plastic-adherent cells on a single-cell level with in vivo counterparts. Cultured BMSCs encompass a rather homogenous cell population, independent of the isolation method used and, although still possessing hematopoiesis-supporting capacity, are distinct from freshly isolated MSCs and more akin to in vivo fibroblast populations. Informed by combined cell trajectories and pathway analyses, we illustrate that TGFb inhibition in vitro can preserve a more "MSC"-like phenotype.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Fibroblastos , Hematopoese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Célula Única
9.
J Orofac Orthop ; 83(Suppl 1): 42-55, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34874457

RESUMO

PURPOSE: To investigate in vitro the impact of fibroblast growth factor 1 (FGF1) in comparison to ascorbic acid (AscA) on human periodontal ligament fibroblast (HPdLF) growth, their osteogenic differentiation, and modulation of their inflammatory reaction to mechanical stress. METHODS: The influence of different concentrations of FGF1 (12.5-200 ng/mL) on growth and proliferation of HPdLF cells was analyzed over 20 days by counting cell numbers and the percentage of Ki67-positive cells. Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALPL), Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OSP), as well as the fibroblast markers vimentin (VIM) and fibroblast-specific protein 1 (FSP1), was performed after 2 and 20 days of cultivation. Metabolic activity was determined by MTT assay. For comparison with AscA, 50 ng/mL FGF1 was used for stimulation for 2 and 20 days. Cell number, percentage of Ki67-positive cells, and expression of osteoblast- and fibroblast-specific genes were examined. Alkaline phosphatase activity was visualized by NBT/BCIP and calcium deposits were stained with alizarin red. Cytokine (IL­6, IL­8, COX2/PGE2) expression and secretion were analyzed by qPCR and ELISA in 6 h mechanically compressed HPdLF cultured for 2 days with FGF1 or ascorbic acid. RESULTS: Higher concentrations of FGF1 promoted cell proliferation upon short-term stimulation, whereas prolonged treatment induced the expression of osteogenic markers even with low concentrations. AscA promotes cell growth more markedly than FGF1 in short-term cultures, whereas FGF1 induced osteogenic cell fate more strongly in long-term culture. Both factors induced an increased inflammatory response of HPdLF to mechanical compression. CONCLUSION: Our data suggest that FGF1 promotes an osteogenic phenotype of HPdLF and limits inflammatory response to mechanical forces compared to AscA.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Ligamento Periodontal , Fosfatase Alcalina/metabolismo , Ácido Ascórbico/metabolismo , Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Antígeno Ki-67/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/fisiologia , Osteopontina/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Vimentina/metabolismo
10.
Ann Anat ; 234: 151668, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400981

RESUMO

Cementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood. Here, we investigated the effect of static compressive stimulation, simulating the compression side of orthodontic force and cell confluence on a murine cementoblast cell line (OC/CM). The influence of cell confluence in cementoblast cells was analyzed by MTS assay and immunostaining. Furthermore, mRNA and protein expression were investigated by real-time RT-PCR and western blotting at different confluence grades and after mechanical stimulation. We observed that cementoblast cell proliferation increases with increasing confluence grades, while cell viability decreases in parallel. Gene expression of remodeling markers is regulated by compressive force. In addition, cementoblast confluence plays a crucial role in this regulation. Confluent cementoblasts show a significantly higher basal expression of Bsp, Osterix, Alpl, Vegfa, Mmp9, Tlr2 and Tlr4 compared to sub-confluent cells. After compressive force of 48 h at 60% confluence, an upregulation of Bsp, Osterix, Alpl, Vegf and Mmp9 is observed. In contrast, at high confluence, all analyzed genes were downregulated through mechanical stress. We also proved a regulation of ERK, phospho-ERK and phospho-AKT dependent on compressive force. In summary, our findings provide evidence that cementoblast physiology and metabolism is highly regulated in a cell confluence-dependent manner and by mechanical stimulation.


Assuntos
Cemento Dentário , Proteínas Proto-Oncogênicas c-akt , Animais , Expressão Gênica , Camundongos , Ligamento Periodontal , Fosforilação
11.
Int J Mol Sci ; 21(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370039

RESUMO

It was hypothesized that strontium (Sr)-doped ß-tricalcium phosphate (TCP)-based scaffolds have a positive effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed ß-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histologically examined. NF-κB activity increased in the ß-TCP + Sr group in the latter stage (day 40-60). VEGFR-2 activity increased in the + Sr group from days 0-15 but decreased and showed significantly less activity than the ß-TCP and non-scaffold groups from days 40-60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the ß-TCP group, whereas the percentage of osseous tissue formation in the ß-TCP group was significantly higher than in the ß-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as respective agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.


Assuntos
Fosfatos de Cálcio/química , NF-kappa B/genética , Fosfatidiletanolaminas/química , Regiões Promotoras Genéticas , Estrôncio/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Regeneração Óssea , Substitutos Ósseos , Osso e Ossos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Alicerces Teciduais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Oncogene ; 38(28): 5670-5685, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043706

RESUMO

The hypoxia-inducible transcription factor HIF-1 is appreciated as a promising target for cancer therapy. However, conditional deletion of HIF-1 and HIF-1 target genes in cells of the tumor microenvironment can result in accelerated tumor growth, calling for a detailed characterization of the cellular context to fully comprehend HIF-1's role in tumorigenesis. We dissected cell type-specific functions of HIF-1 for intestinal tumorigenesis by lineage-restricted deletion of the Hif1a locus. Intestinal epithelial cell-specific Hif1a loss reduced activation of Wnt/ß-catenin, tumor-specific metabolism and inflammation, significantly inhibiting tumor growth. Deletion of Hif1a in myeloid cells reduced the expression of fibroblast-activating factors in tumor-associated macrophages resulting in decreased abundance of tumor-associated fibroblasts (TAF) and robustly reduced tumor formation. Interestingly, hypoxia was detectable only sparsely and without spatial association with HIF-1α, arguing for an importance of hypoxia-independent, i.e., non-canonical, HIF-1 stabilization for intestinal tumorigenesis that has not been previously appreciated. This adds a further layer of complexity to the regulation of HIF-1 and suggests that hypoxia and HIF-1α stabilization can be uncoupled in cancer. Collectively, our data show that HIF-1 is a pivotal pro-tumorigenic factor for intestinal tumor formation, controlling key oncogenic programs in both the epithelial tumor compartment and the tumor microenvironment.


Assuntos
Neoplasias Colorretais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes , Estabilidade Proteica , Microambiente Tumoral
13.
Cell Mol Life Sci ; 75(18): 3297-3312, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29728714

RESUMO

Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.


Assuntos
Elasticidade , Células-Tronco Mesenquimais/citologia , Resistência ao Cisalhamento , Diferenciação Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Plásticos/farmacologia
14.
Stem Cell Res Ther ; 9(1): 28, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402304

RESUMO

BACKGROUND: Studies in which mesenchymal stromal cells (MSC) from the placenta are compared with multiple MSC types from other sources are rare. The chorionic plate of the human placenta is mainly composed of fetal blood vessels embedded in fetal stroma tissue, lined by trophoblastic cells and organized into chorionic villi (CV) structures. METHODS: We comprehensively characterized human MSC collected from postnatal human chorionic villi of placenta (CV-MSC) by analyzing their growth and proliferation potential, differentiation, immunophenotype, extracellular matrix production, telomere length, aging phenotype, and plasticity. RESULTS: Immunophenotypic characterization of CV-MSC confirmed the typical MSC marker expression as defined by the International Society for Cellular Therapy. The surface marker profile was consistent with increased potential for proliferation, vascular localization, and early myogenic marker expression. CV-MSC retained multilineage differentiation potential and extracellular matrix remodeling properties. They have undergone reduced telomere loss and delayed onset of cellular senescence as they aged in vitro compared to three other MSC sources. We present evidence that increased human telomerase reverse transcriptase gene expression could not explain the exceptional telomere maintenance and senescence onset delay in cultured CV-MSC. Our in-vitro tumorigenesis detection assay suggests that CV-MSC are not prone to undergo malignant transformation during long-term in-vitro culture. Besides SOX2 expression, no other pluripotency features were observed in early and late passages of CV-MSC. CONCLUSIONS: Our work brings forward two remarkable characteristics of CV-MSC, the first being their extended life span as a result of delayed replicative senescence and the second being a delayed aged phenotype characterized by improved telomere length maintenance. MSC from human placenta are very attractive candidates for stem cell-based therapy applications.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Proliferação de Células , Vilosidades Coriônicas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia
15.
J Tissue Eng Regen Med ; 11(11): 2988-2998, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27641068

RESUMO

Mesenchymal stem cells (MSC) are precursor cells of mesodermal tissue and, because of their trophic phenotype, they are known to play beneficial roles in wound healing. In addition, various tissue engineering strategies are based on MSC/biomaterial constructs. As the isolation and expansion of MSCs is a long-term process, a major goal is to develop an endogenous stem cell recruitment system that circumvents all ex vivo steps generally used for tissue engineering. Therefore collagen and silk fibroin were loaded with hepatocyte growth factor (HGF), a chemoattractant for MSCs. Collagen was mixed with HGF during polymerization, while silk fibroin and HGF were produced as fusion proteins by transgenic silkworms. To demonstrate release of active HGF, enzyme-linked immunosorbent assay, in vitro migration assays and animal studies were performed to demonstrate MSC migration in vivo, followed by detailed examinations of the immunological effects of the biomaterials. Hepatocyte growth factor was released burst-like, both from silk fibroin and collagen during the first 8 h and gradually for up to 168 h in vitro. Directed migration in vitro was demonstrated when MSCs were exposed to HGF. In vivo, HGF-loaded collagen and silk fibroin were tolerated as subcutaneous implants. In addition, it was proved that endogenous MSCs were recruited from the local environment. These results show for the first time recruitment of endogenous MSCs to HGF-loaded collagen (fast degradable) and silk fibroin scaffolds (long-term degradable) in vitro and in vivo. This knowledge could be applied to make off-the-shelf, readily available constructs for use in patients with chronic wound or burns. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Materiais Biocompatíveis , Movimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito , Células-Tronco Mesenquimais/metabolismo , Ferimentos e Lesões/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Feminino , Fibroínas/química , Fibroínas/farmacocinética , Fibroínas/farmacologia , Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/farmacocinética , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
16.
J Craniomaxillofac Surg ; 44(8): 985-94, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27328894

RESUMO

Polyetherketoneketone (PEKK) a high performance thermoplastic polymer that is FDA-approved for cranio- and maxillo-facial as well as spineal surgery. We studied the viability, growth and osteogenic differentiation of bone marrow-derived human and sheep mesenchymal stem cells (MSC) in combination with a 3D scaffold made of PEKK using different cell-based assays. To investigate if autologous MSC, either undifferentiated or osteogenically pre-differentiated, augmented bone formation after implantation, we implanted cell-seeded 3D PEKK scaffolds into calvarial defects in sheep for 12 weeks. The volume and quality of newly formed bone were investigated using micro-computer tomography (micro-CT) and histological stainings. Our results show that the 3D PEKK scaffolds were cyto- and bio-compatible. They allowed for adherence, growth and osteogenic differentiation of human and ovine MSC. However, bone healing seemed unaffected by whether the scaffolds were seeded with MSC. Considerable amounts of newly formed bone were found in all PEKK treated groups, but a fibrous capsule was formed around the implants regardless of cell seeding with MSC.


Assuntos
Benzofenonas , Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Polímeros , Crânio , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Modelos Animais de Doenças , Humanos , Modelos Animais , Osseointegração , Ovinos
17.
Biomed Tech (Berl) ; 60(3): 215-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25719280

RESUMO

Several studies focusing on bone tissue engineering demonstrated that given microstructuring of an implant surface has a strong effect on its interaction with cells, and their adhesion and differentiation. In the present study, geometrically structured titanium alloy surfaces are shown to be able to guide cell adhesion during differentiation in vitro. For this reason, using an electron beam texturing technique, TiAl6V4 surfaces were selectively targeted in the micrometer range. The effect of such textured titanium alloy surfaces on cell adhesion during osteogenic differentiation was analyzed for human mesenchymal stem cells (MSC), the natural precursor cells of bone tissue. Cytotoxicity, cell viability and differentiation were analyzed. Immunofluorescence stainings demonstrated that in contrast to MSC in an expansion medium, MSC in an osteogenic induction medium produce adhesion proteins such as ß3-integrins and thereby connect in an oriented way to the generated microstructures on titanium alloy surfaces. These results are of relevance for developing tailored titanium alloy implant surfaces which exhibit an improved cell response.


Assuntos
Ligas/química , Adesão Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Titânio/química , Adesão Celular/fisiologia , Diferenciação Celular , Elétrons , Humanos , Propriedades de Superfície
18.
Tissue Eng Part A ; 21(3-4): 740-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25236338

RESUMO

The mechanical and physicochemical effects of three-dimensional (3D) printable hydrogels on cell behavior are paramount features to consider before manufacturing functional tissues. We hypothesize that besides good printability and cytocompatibility of a supporting hydrogel for the manufacture of individual tissues, it is equally essential to consider beforehand the desired tissue (bone, cartilage, fat). In light of its application, the structure and stiffness of printable hydrogel matrices influence cell geometry, which in turn impacts the differentiation fate. Embedded human mesenchymal stromal cells in printable type I collagen- and chitosan-agarose blends were induced to differentiate toward osteoblasts and adipocytes. Hydrogels' printability in air versus submerged printing in perfluorocarbon was evaluated according to the height, diameter, uniformity, and stability of 3D printed vertical cylinders. Bipotent differentiation within hydrogels was assessed histologically (morphology, cellularity), by immunohistochemistry (vimentin, smooth muscle actin), two-photon microscopy (spatial distribution), and real-time polymerase chain reaction (ALP, BGLAP, OPN, RUNX2, COL 1, aP2, PPARγ-2). Agarose and agarose blends revealed the most valid printability properties by generating uniform cylinders with an average height of 4 mm. Osteogenic differentiation was preferably achieved in anisotropic soft collagen-rich substrates, whereas adipogenic differentiation mostly occurred in isotropic stiff agarose-rich matrices. The conjugation of type I collagen to agarose with varying ratios is possibly a suitable bioink for a broad range of 3D printed mesenchymal tissues.


Assuntos
Adipogenia/fisiologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Impressão Tridimensional , Alicerces Teciduais , Adipócitos/citologia , Materiais Biocompatíveis/síntese química , Diferenciação Celular/fisiologia , Células Cultivadas , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Osteoblastos/citologia , Engenharia Tecidual/instrumentação
19.
Stem Cells Int ; 2013: 892065, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861688

RESUMO

Human adult mesenchymal stem cells (MSC) can be readily harvested from bone marrow through aspiration. MSC are involved in tissue regeneration and repair, particularly in wound healing. Due to their high self-renewal capacity and excellent differentiation potential in vitro, MSC are ideally suited for regenerative medicine. The complex interactions of MSC with their environment and their influence on the molecular and functional levels are widely studied but not completely understood. MSC secrete, for example, hepatocyte growth factor (HGF), whose concentration is enhanced in wounded areas and which is shown to act as a chemoattractant for MSC. We produced HGF-loaded biomaterials based on collagen and fibrin gels to develop a recruitment system for endogenous MSC to improve wound healing. Here, we report that HGF incorporated into collagen or fibrin gels leads to enhanced and directed MSC migration in vitro. HGF-loaded biomaterials might be potentially used as in vivo wound dressings to recruit endogenous MSC from tissue-specific niches towards the wounded area. This novel approach may help to reduce costly multistep procedures of cell isolation, in vitro culture, and transplantation usually used in tissue engineering.

20.
Curr Pharm Des ; 19(30): 5457-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431989

RESUMO

Galectins,ß-galactoside binding proteins, function in several physiological and pathological processes. The further evaluation of these processes as well as possible applications of galectins in diagnosis and therapy has raised high scientific interest. Therefore, easy and reliable test systems are necessary. Here we present the simple and cost-efficient production of recombinant human galectins as fusion proteins with SNAP-tag and fluorescent proteins. These constructs show binding specificities and oligomerisation properties generally comparable to recombinant galectins. Their direct fluorescence signal was utilised by ELISA-type assay and flow cytometry analysis with human and ovine mesenchymal stem cells (MSC). Flow cytometry demonstrated glycan mediated binding of His6-SNAP-YFP-Gal- 3 to both MSC types, which was specifically inhibited by lactose. Moreover, directed immobilisation by SNAP-tag technology onto benzylguanine- activated sepharose was utilised to prepare galectin affinity columns for glycoprotein analysis and purification. The SNAPtag directed coupling yielded up to three-fold higher binding capacities for the glycoprotein standard asialofetuin compared to nondirected coupled galectin suggesting improved functionality following directed coupling.


Assuntos
Galectinas/química , Proteínas Luminescentes/química , Imagem Molecular/métodos , Proteínas Recombinantes/química , Assialoglicoproteínas/química , Células Cultivadas , Cromatografia de Afinidade , Fetuínas/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Ligação Proteica , Transferrina/química , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA