Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 24(3): 406-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379280

RESUMO

HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR; however, their polarization and function remain unclear. In this study, we utilized an in vitro Transwell coculture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA-activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2 macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2 macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2 macrophages within the neointima of CAV-affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2 macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.


Assuntos
Receptor 4 Toll-Like , Doenças Vasculares , Humanos , Metaloproteinase 9 da Matriz , Selectina-P , Macrófagos , Endotélio , Antígenos HLA , Aloenxertos , Imunoglobulina G
2.
Am J Transplant ; 23(12): 1858-1871, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37567451

RESUMO

Ischemia-reperfusion injury (IRI) during orthotopic liver transplantation (OLT) contributes to graft rejection and poor clinical outcomes. The disulfide form of high mobility group box 1 (diS-HMGB1), an intracellular protein released during OLT-IRI, induces pro-inflammatory macrophages. How diS-HMGB1 differentiates human monocytes into macrophages capable of activating adaptive immunity remains unknown. We investigated if diS-HMGB1 binds toll-like receptor (TLR) 4 and TLR9 to differentiate monocytes into pro-inflammatory macrophages that activate adaptive immunity and promote graft injury and dysfunction. Assessment of 106 clinical liver tissue and longitudinal blood samples revealed that OLT recipients were more likely to experience IRI and graft dysfunction with increased diS-HMGB1 released during reperfusion. Increased diS-HMGB1 concentration also correlated with TLR4/TLR9 activation, polarization of monocytes into pro-inflammatory macrophages, and production of anti-donor antibodies. In vitro, healthy volunteer monocytes stimulated with purified diS-HMGB1 had increased inflammatory cytokine secretion, antigen presentation machinery, and reactive oxygen species production. TLR4 inhibition primarily impeded cytokine/chemokine and costimulatory molecule programs, whereas TLR9 inhibition decreased HLA-DR and reactive oxygen species production. diS-HMGB1-polarized macrophages also showed increased capacity to present antigens and activate T memory cells. In murine OLT, diS-HMGB1 treatment potentiated ischemia-reperfusion-mediated hepatocellular injury, accompanied by increased serum alanine transaminase levels. This translational study identifies the diS-HMGB1/TLR4/TLR9 axis as potential therapeutic targets in OLT-IRI recipients.


Assuntos
Proteína HMGB1 , Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Receptor Toll-Like 9/metabolismo , Proteína HMGB1/metabolismo , Receptor 4 Toll-Like/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fígado , Traumatismo por Reperfusão/metabolismo , Macrófagos , Citocinas/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
3.
Hepatology ; 73(3): 1158-1175, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32426849

RESUMO

BACKGROUND AND AIMS: Sterile inflammation is a major clinical concern during ischemia-reperfusion injury (IRI) triggered by traumatic events, including stroke, myocardial infarction, and solid organ transplantation. Despite high-mobility group box 1 (HMGB1) clearly being involved in sterile inflammation, its role is controversial because of a paucity of patient-focused research. APPROACH AND RESULTS: Here, we examined the role of HMGB1 oxidation states in human IRI following liver transplantation. Portal blood immediately following allograft reperfusion (liver flush; LF) had increased total HMGB1, but only LF from patients with histopathological IRI had increased disulfide-HMGB1 and induced Toll-like receptor 4-dependent tumor necrosis factor alpha production by macrophages. Disulfide HMGB1 levels increased concomitantly with IRI severity. IRI+ prereperfusion biopsies contained macrophages with hyperacetylated, lysosomal disulfide-HMGB1 that increased postreperfusion at sites of injury, paralleling increased histone acetyltransferase general transcription factor IIIC subunit 4 and decreased histone deacetylase 5 expression. Purified disulfide-HMGB1 or IRI+ blood stimulated further production of disulfide-HMGB1 and increased proinflammatory molecule and cytokine expression in macrophages through a positive feedback loop. CONCLUSIONS: These data identify disulfide-HMGB1 as a mechanistic biomarker of, and therapeutic target for, minimizing sterile inflammation during human liver IRI.


Assuntos
Proteína HMGB1/metabolismo , Transplante de Fígado/efeitos adversos , Traumatismo por Reperfusão/etiologia , Citocinas/metabolismo , Dissulfetos/sangue , Feminino , Imunofluorescência , Proteína HMGB1/sangue , Humanos , Fígado/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Monócitos/metabolismo , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Doadores de Tecidos
4.
Am J Transplant ; 20(10): 2686-2702, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32320528

RESUMO

HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury.


Assuntos
Células Endoteliais , Rejeição de Enxerto , Aloenxertos , Animais , Rejeição de Enxerto/etiologia , Antígenos HLA , Humanos , Inflamação/etiologia , Isoanticorpos , Macrófagos , Camundongos , Fenótipo , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA