Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 27(10): 1265-1280, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34266995

RESUMO

XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.


Assuntos
Neoplasias Ósseas/genética , Exorribonucleases/genética , Proteínas Associadas aos Microtúbulos/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Biologia Computacional , Exorribonucleases/deficiência , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Proteínas Associadas aos Microtúbulos/deficiência , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo
2.
PLoS Genet ; 16(12): e1009297, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370287

RESUMO

Dis3L2 is a highly conserved 3'-5' exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms' tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth. IDGFs are conserved proteins homologous to human chitinase-like proteins such as CHI3L1/YKL-40 which are implicated in tissue regeneration as well as cancers including colon cancer and non-small cell lung cancer. We also demonstrate that loss of DIS3L2 in human kidney HEK-293T cells results in cell proliferation, illustrating the conservation of this important cell proliferation pathway. Using these human cells, we show that loss of DIS3L2 results in an increase in the PI3-Kinase/AKT signalling pathway, which we subsequently show to contribute towards the proliferation phenotype in Drosophila. Our work therefore provides the first mechanistic explanation for DIS3L2-induced overgrowth in humans and flies and identifies an ancient proliferation pathway controlled by Dis3L2 to regulate cell proliferation and tissue growth.


Assuntos
Proliferação de Células , Discos Imaginais/metabolismo , Animais , Proteína 1 Semelhante à Quitinase-3/química , Proteína 1 Semelhante à Quitinase-3/metabolismo , Sequência Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Discos Imaginais/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Biochem J ; 475(12): 2091-2105, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29802118

RESUMO

DIS3 (defective in sister chromatid joining) is the catalytic subunit of the exosome, a protein complex involved in the 3'-5' degradation of RNAs. DIS3 is a highly conserved exoribonuclease, also known as Rrp44. Global sequencing studies have identified DIS3 as being mutated in a range of cancers, with a considerable incidence in multiple myeloma. In this work, we have identified two protein-coding isoforms of DIS3. Both isoforms are functionally relevant and result from alternative splicing. They differ from each other in the size of their N-terminal PIN (PilT N-terminal) domain, which has been shown to have endoribonuclease activity and tether DIS3 to the exosome. Isoform 1 encodes a full-length PIN domain, whereas the PIN domain of isoform 2 is shorter and is missing a segment with conserved amino acids. We have carried out biochemical activity assays on both isoforms of full-length DIS3 and the isolated PIN domains. We find that isoform 2, despite missing part of the PIN domain, has greater endonuclease activity compared with isoform 1. Examination of the available structural information allows us to provide a hypothesis to explain this altered behaviour. Our results also show that multiple myeloma patient cells and all cancer cell lines tested have higher levels of isoform 1 compared with isoform 2, whereas acute myeloid leukaemia and chronic myelomonocytic leukaemia patient cells and samples from healthy donors have similar levels of isoforms 1 and 2. Taken together, our data indicate that significant changes in the ratios of the two isoforms could be symptomatic of haematological cancers.


Assuntos
Processamento Alternativo , Complexo Multienzimático de Ribonucleases do Exossomo/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/enzimologia , Proteínas de Neoplasias/biossíntese , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células HEK293 , Células HeLa , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Proteínas de Neoplasias/genética , Células THP-1
4.
Biomolecules ; 8(2)2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29701682

RESUMO

Effective management of melanoma depends heavily on early diagnosis. When detected in early non-metastatic stages, melanoma is almost 100% curable by surgical resection, however when detected in late metastatic stages III and IV, 5-year survival rates drop to ~50% and 10⁻25%, respectively, due to limited efficacy of current treatment options. This presents a pressing need to identify biomarkers that can detect patients at high risk of recurrence and progression to metastatic disease, which will allow for early intervention and survival benefit. Accumulating evidence over the past few decades has highlighted the potential use of circulating molecular biomarkers for melanoma diagnosis and prognosis, including lactate dehydrogenase (LDH), S100 calcium-binding protein B (S100B) and circulating tumor DNA (ctDNA) fragments. Since 2010, circulating microRNAs (miRNAs) have been increasingly recognised as more robust non-invasive biomarkers for melanoma due to their structural stability under the harsh conditions of the blood and different conditions of sample processing and isolation. Several pre-analytical and analytical variables challenge the accurate quantification of relative miRNA levels between serum samples or plasma samples, leading to conflicting findings between studies on circulating miRNA biomarkers for melanoma. In this review, we provide a critical summary of the circulating miRNA biomarkers for melanoma published to date.


Assuntos
Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , Melanoma/sangue , MicroRNAs/sangue , Medicina de Precisão/métodos , Humanos , Melanoma/terapia , Valor Preditivo dos Testes
5.
Biochem Soc Trans ; 45(4): 895-904, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673935

RESUMO

Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs regulates gene expression in diverse ways and has been involved in a large variety of important biological functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human diseases, including cancer. Comparative analyses of their functions among these organisms suggest that some of their modes of action appear to be conserved. This highlights the importance of model organisms such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA function and its possible impact in human health. This review discusses some known functions and mechanisms of action of lncRNAs and their implication in human diseases, together with their functional conservation and relevance in Drosophila development.


Assuntos
Carcinogênese/metabolismo , Montagem e Desmontagem da Cromatina , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , RNA Longo não Codificante/metabolismo , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Genoma Humano , Genoma de Inseto , Humanos , Especificidade da Espécie
6.
RNA Biol ; 13(12): 1286-1299, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27630034

RESUMO

In a complex organism, cell proliferation and apoptosis need to be precisely controlled in order for tissues to develop correctly. Excessive cell proliferation can lead to diseases such as cancer. We have shown that the exoribonuclease Dis3L2 is required for the correct regulation of proliferation in a natural tissue within the model organism Drosophila melanogaster. Dis3L2 is a member of a highly conserved family of exoribonucleases that degrade RNA in a 3'-5' direction. We show that knockdown of dis3L2 in the Drosophila wing imaginal discs results in substantial wing overgrowth due to increased cellular proliferation rather than an increase in cell size. Imaginal discs are specified in the embryo before proliferating and differentiating to form the adult structures of the fly. Using RNA-seq we identified a small set of mRNAs that are sensitive to Dis3L2 activity. Of the mRNAs which increase in levels and are therefore potential targets of Dis3L2, we identified 2 that change at the post-transcriptional level but not at the transcriptional level, namely CG2678 (a transcription factor) and pyrexia (a TRP cation channel). We also demonstrate a compensatory effect between Dis3L2 and the 5'-3' exoribonuclease Pacman demonstrating that these 2 exoribonucleases function to regulate opposing pathways within the developing tissue. This work provides the first description of the molecular and developmental consequences of Dis3L2 inactivation in a non-human animal model. The work is directly relevant to the understanding of human overgrowth syndromes such as Perlman syndrome.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Exorribonucleases/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Exorribonucleases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Discos Imaginais/metabolismo , Análise de Sequência de RNA , Asas de Animais/metabolismo
7.
Sci Rep ; 6: 28006, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27320175

RESUMO

Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these 'circulating inflammation-related microRNAs' (CIR-miRNAs) were 2.64 (IQR: 2.10-3.29) and 1.52 (IQR: 1.15-1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742-0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets.


Assuntos
MicroRNAs/sangue , Sepse/sangue , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Adulto , Idoso , Área Sob a Curva , Biomarcadores/sangue , Proteína C-Reativa/análise , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interleucina-1/sangue , Interleucina-6/sangue , Masculino , MicroRNAs/química , Pessoa de Meia-Idade , Análise de Componente Principal , Curva ROC , Sepse/genética , Sepse/patologia , Análise de Sequência de DNA , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/patologia , Regulação para Cima
8.
Biomolecules ; 5(3): 1515-39, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26193331

RESUMO

DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis.


Assuntos
Doença , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Animais , Sequência Conservada , Doença/genética , Humanos , Transporte Proteico
9.
RNA Biol ; 12(7): 728-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25892215

RESUMO

Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a "no wing" phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥ 2-fold and 6 (5.5%) decreasing in level ≥ 2-fold. Of these microRNAs, miR-252-5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252-5p for degradation during normal wing development. Another microRNA, miR-982-5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Discos Imaginais/metabolismo , MicroRNAs/metabolismo , Animais , Drosophila/genética , Exorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , MicroRNAs/genética , Análise de Sequência de RNA , Transcriptoma , Tribolium , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Biol Open ; 4(5): 649-60, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25836675

RESUMO

Programmed cell death, or apoptosis, is a highly conserved cellular process that is crucial for tissue homeostasis under normal development as well as environmental stress. Misregulation of apoptosis is linked to many developmental defects and diseases such as tumour formation, autoimmune diseases and neurological disorders. In this paper, we show a novel role for the exoribonuclease Pacman/Xrn1 in regulating apoptosis. Using Drosophila wing imaginal discs as a model system, we demonstrate that a null mutation in pacman results in small imaginal discs as well as lethality during pupation. Mutant wing discs show an increase in the number of cells undergoing apoptosis, especially in the wing pouch area. Compensatory proliferation also occurs in these mutant discs, but this is insufficient to compensate for the concurrent increase in apoptosis. The phenotypic effects of the pacman null mutation are rescued by a deletion that removes one copy of each of the pro-apoptotic genes reaper, hid and grim, demonstrating that pacman acts through this pathway. The null pacman mutation also results in a significant increase in the expression of the pro-apoptotic mRNAs, hid and reaper, with this increase mostly occurring at the post-transcriptional level, suggesting that Pacman normally targets these mRNAs for degradation. Our results uncover a novel function for the conserved exoribonuclease Pacman and suggest that this exoribonuclease is important in the regulation of apoptosis in other organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA