Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Nat Prod ; 87(7): 1763-1777, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38970504

RESUMO

The isolation, structure determination, and biological evaluation of constituents from the organic extract of Turraea delphinensis Wahlert (Meliaceae) resulted in the isolation of 51 secondary metabolites, including 14 new terpenoids (six cycloartanes, four tirucallanes/euphanes, three limonoids, and a 7-keto sterol). Among the new compounds, 1 is the first triterpenoid with a trioxaspiro[4.4]nonane side chain, while 11-13 are the first 17-γ-lactone tetranortriterpenoids with four oxygenated functional groups at C-1, -3, -6, and -7. The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines, including a vinblastine-resistant cell line.


Assuntos
Antineoplásicos Fitogênicos , Ensaios de Seleção de Medicamentos Antitumorais , Meliaceae , Terpenos , Triterpenos , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Estrutura Molecular , Meliaceae/química , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Linhagem Celular Tumoral , Limoninas/farmacologia , Limoninas/química , Limoninas/isolamento & purificação , Proliferação de Células/efeitos dos fármacos
2.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338394

RESUMO

Eight vilasinin-class limonoids, including the unusually chlorinated rubescins K-M (1-3), the 2,3-epoxylated rubescin N (4), and rubescins O-R (5-8), were newly isolated from Trichilia rubescens. The structures of the isolated compounds were determined through spectroscopic and spectrometric analyses, as well as ECD calculations. The natural occurrence of chlorinated limonoids 1-3 was confirmed by chemical methods and HPLC analysis of a roughly fractionated portion of the plant extract. Eight selected limonoids, including previously known and new compounds, were evaluated for antiproliferative activity against five human tumor cell lines. All tested limonoids, except 8, exhibited significant potency, with IC50 values of <10 µM; in particular, limonoid 14 strongly inhibited tumor cell growth, with IC50 values of 0.54-2.06 µM against all tumor cell lines, including multi-drug-resistant cells.


Assuntos
Limoninas , Meliaceae , Humanos , Limoninas/química , Linhagem Celular Tumoral , Meliaceae/química , Estrutura Molecular
3.
J Nat Prod ; 87(2): 266-275, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38251859

RESUMO

Four cytotoxic heptacyclic caged-xanthones [gambogefic acids B-E (1-4)], a cytotoxic hexacyclic caged-xanthone [garcilatelic acid (5)], and four biphenyl derivatives [garcilatelibiphenyls A-D (6-9)] were newly isolated in a phytochemical study of a 50% MeOH/CH2Cl2 extract of Garcinia lateriflora (Clusiaceae). The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines including a vincristine-resistant line. The new caged-xanthones displayed potent activity with IC50 values from 0.5 to 6.7 µM against all tested tumor cell lines.


Assuntos
Antineoplásicos Fitogênicos , Garcinia , Xantonas , Humanos , Compostos de Bifenilo , Linhagem Celular Tumoral , Xantonas/farmacologia , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia
4.
Natl Sci Rev ; 9(11): nwac206, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36404871

RESUMO

This review covers the recent history of a series of very important natural products and their derivatives that are currently in use or under evaluation in the areas of anti-infectives, important cancer treatments that include antibody drug conjugates, followed by a discussion of type 2 diabetes (T2DM) drugs and angiotensin converting enzyme inhibitors. The current structures of the agents are shown, though in the case of some peptides used in T2DM drugs the standard single letter abbreviation for an amino acid is used.

5.
Mar Drugs ; 20(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35049917

RESUMO

Marine environments are underexplored terrains containing fungi that produce a diversity of natural products given unique environmental pressures and nutrients. While bacteria are commonly the most studied microorganism for natural products in the marine world, marine fungi are also abundant but remain an untapped source of bioactive metabolites. Given that their terrestrial counterparts have been a source of many blockbuster antitumor agents and anti-infectives, including camptothecin, the penicillins, and cyclosporin A, marine fungi also have the potential to produce new chemical scaffolds as leads to potential drugs. Fungi are more phylogenetically diverse than bacteria and have larger genomes that contain many silent biosynthetic gene clusters involved in making bioactive compounds. However, less than 5% of all known fungi have been cultivated under standard laboratory conditions. While the number of reported natural products from marine fungi is steadily increasing, their number is still significantly lower compared to those reported from their bacterial counterparts. Herein, we discuss many varied cytotoxic and anti-infective fungal metabolites isolated from extreme marine environments, including symbiotic associations as well as extreme pressures, temperatures, salinity, and light. We also discuss cultivation strategies that can be used to produce new bioactive metabolites or increase their production. This review presents a large number of reported structures though, at times, only a few of a large number of related structures are shown.


Assuntos
Organismos Aquáticos , Fungos , Animais , Anti-Infecciosos , Antineoplásicos , Fatores Biológicos
6.
Curr Ther Res Clin Exp ; 95: 100645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691294

RESUMO

For a significant number of years, scientists of many persuasions have assayed natural product materials ranging from crude extracts to pure compounds, in a multitude of assays causally related to some biological processes. However, in a very significant number of submitted papers and published articles, what may be considered as canned biological assays were used, and if a positive effect was observed, then the authors would claim that the material assayed was a potential drug lead. This also occurred with pure synthetic compounds and compounds derived from natural products by simple chemical modifications. However, what has now become quite obvious-with all such classes of materials-is that there are many promiscuous players with multiple bioactivities. These can range from relatively crude extracts, pure compounds from natural products, synthetic processes that produce natural product derivatives, and even compounds that are truly synthetic in origin. There is also a potential problem with the data from crude to purified extracts being used to claim some form of beneficial activities for such materials, to sell that particular mixture to the lay public, by very careful descriptions of its possible uses due to legal hurdles. With the advent of artificial intelligence and very large compound databases, some of which may well contain impure materials, scientists from a variety of backgrounds have begun to utilize such listings to obtain compounds for their low to high throughput biological screens, without realizing that there are very significant numbers of active compounds (eg, pan assay interference compounds and invalid metabolic panaceas), that will hit in many different screens for a variety of reasons, thus leading to significant wasted efforts and published scientific articles that have incorrect results. This commentary gives some of the history of such materials but is designed to be used as a warning to both researchers and in particular, journal editors, and reviewers, that reports of biological results that are claimed to be the result of the compounds used, need to be very carefully screened for results due to such promiscuous compounds, irrespective of their nominal source(s). All literature searches were made by the author and the background knowledge has come from more than 55 years of research in industry and governmental laboratories in both the United Kingdom and the United States, for enzyme inhibitors/activators as well as antimicrobial and antitumor lead compounds mainly from natural product sources. The conclusion that I came up with as a result is this: Caveat emptor. (Curr Ther Res Clin Exp. 2021; 82:XXX-XXX) © 2021 Elsevier HS Journals, Inc.

7.
J Nat Prod ; 84(3): 917-931, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33635651

RESUMO

As of early November 2020, there are 10 approved antibody drug conjugates (ADCs) plus two others that are not usually listed. In addition, there are 70 ADCs at stages from phase I to phase III and 23 that are at the preclinical stage. The warheads of all of these drugs and drug candidates have their origins in natural product structures. The sources and modifications are discussed in general and then specifically commented on in each case with either the generic name if known and/or the ADC's ID names. Interestingly, almost all warheads listed are from microbial sources though initially a number were thought to have been from plants. The latest NCT numbers from Clintrials.gov of all phase I to phase III candidates are also given. Three unusual ADCs are also discussed, two of which (an antitumor agent and one directed against autoimmune diseases) are not usually listed as ADCs, with the third being an anti-infective.


Assuntos
Produtos Biológicos/farmacologia , Imunoconjugados/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Aprovação de Drogas , Estrutura Molecular
8.
J Nat Prod ; 83(3): 770-803, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32162523

RESUMO

This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas , Descoberta de Drogas/história , História do Século XX , História do Século XXI , Estrutura Molecular , Preparações Farmacêuticas
9.
Adv Pharmacol ; 87: 113-158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089231

RESUMO

TCM-based medications have been used for millennia in China and have always been "different" from current Western-based medicines in that they frequently are still mixtures of predominately plant products. From the early 20th Century, there has been a move to identify both the actual compounds in these mixes, and then over the past approximately 50years, to utilize early information for current diseases, with an example being artemisinin for treatment of malaria. Since that discovery, Western scientists, together with their Chinese counterparts, have begun to investigate how TCM compositions can be utilized to discover new agents, sometimes the actual TCM-based compound(s) but also by utilizing the pharmacophores from such preparations that have utility in human diseases. The examples in this review include artemisinin derivatives and their manifold bioactivities, indirubins and derivatives as antitumor agents, arsenicals predominately as treatment for leukemia, though extending into other cancer types. Finally, there are sections discussing the use of current computerized techniques that combine metabolomics, mass spectroscopy/HPLC, and network pharmacology with the aim of identifying the "active principles" in relevant TCM preparations and finally how high content screening can be utilized in conjunction with the other analytical techniques.


Assuntos
Medicina Tradicional Chinesa , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Artemisininas/química , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Metabolômica , Estereoisomerismo
10.
Planta Med ; 86(13-14): 891-905, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32023633

RESUMO

In the last 20 or so years, the influence of endophytes and, quite recently, epiphytes of plants upon the compounds found in those plants, which were usually assumed to be phytochemicals produced by the plant for a variety of reasons, often as a defense against predators, is becoming more evident, in particular in the case of antitumor agents originally isolated from plant sources, though antibiotic agents might also be found, particularly from epiphytes. In this review, we started with the first report in 1993 of a taxol-producing endophyte and then expanded the compounds discussed to include camptothecin, the vinca alkaloids, podophyllotoxin, and homoharringtonine from endophytic microbes and then the realization that maytansine is not a plant secondary metabolite at all, and that even such a well-studied plant such as Arabidopsis thaliana has a vast repertoire of potential bioactive agents in its leaf epiphytic bacteria. We have taken data from a variety of sources, including a reasonable history of these discoveries that were not given in recent papers by us, nor in other papers covering this topic. The sources included the Scopus database, but we also performed other searches using bibliographic tools, thus, the majority of the papers referenced are the originals, though we note some very recent papers that have built on previous results. We concluded with a discussion of the more modern techniques that can be utilized to "persuade" endophytes and epiphytes to switch on silent biosynthetic pathways and how current analytical techniques may aid in evaluating such programs. We also comment at times on some findings, particularly in the case of homoharringtonine, where there are repetitious data reports differing by a few years claiming the same endophyte as the producer.


Assuntos
Antineoplásicos , Endófitos , Antibacterianos , Fungos , Plantas
11.
Molecules ; 24(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694283

RESUMO

Seven new butanolides, peltanolides A-G (1-7), and two lignan glucosides, peltasides A (8) and B (9), along with eleven known compounds, 10-20, were isolated from a crude CH3OH/CH2Cl2 (1:1) extract of the fruit of Hernandia nymphaeifolia (Hernandiaceae). The structures of 1-9 were characterized by extensive 1D and 2D NMR spectroscopic and HRMS analysis. The absolute configurations of newly isolated compounds 1-9 were determined from data obtained by optical rotation and electronic circular dichroism (ECD) exciton chirality methods. Butanolides and lignan glucosides have not been isolated previously from this genus. Several isolated compounds were evaluated for antiproliferative activity against human tumor cell lines. Lignans 15 and 16 were slightly active against chemosensitive tumor cell lines A549 and MCF-7, respectively. Furthermore, both compounds displayed significant activity (IC50 = 5 µM) against a P-glycoprotein overexpressing multidrug-resistant tumor cell line (KB-VIN) but were less active against its parent chemosensitive cell line (KB).


Assuntos
Proliferação de Células/efeitos dos fármacos , Frutas/química , Glicosídeos/química , Glicosídeos/farmacologia , Hernandiaceae/química , Lignanas/química , Lignanas/farmacologia , Células A549 , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Dicroísmo Circular/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos
12.
Fitoterapia ; 137: 104285, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31386897

RESUMO

Botanical-based natural products are an important resource for medicinal drug discovery and continue to provide diverse pharmacophores with therapeutic potential against cancer and other human diseases. A prototype Traditional Chinese Medicine (TCM) plant extract library has been established at the US National Cancer Institute, which contains both the organic and aqueous extracts of 132 authenticated medicinal plant species that collectively represent the potential therapeutic contents of most commonly used TCM herbal prescriptions. This library is publicly available in 96- and 384- well plates for high throughput screening across a broad array of biological targets, as well as in larger quantities for isolation of active chemical ingredients. Herein, we present the methodology used to generate the library and the preliminary assessment of the anti-proliferative activity of this crude extract library in NCI-60 human cancer cell lines screen. Particularly, we report the chemical profiling and metabolome comparison analysis of four commonly used TCM plants, namely Brucea javanica, Dioscorea nipponica, Cynanchum atratum, and Salvia miltiorrhiza. Bioassay-guided isolation resulted in the identification of the active compounds, and different extraction methods were compared for their abilities to extract cytotoxic compounds and to concentrate biologically active natural products.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Plantas Medicinais/química , Antineoplásicos Fitogênicos/isolamento & purificação , Brucea/química , Linhagem Celular Tumoral , China , Cynanchum/química , Dioscorea/química , Descoberta de Drogas , Humanos , Medicina Tradicional Chinesa , National Cancer Institute (U.S.) , Compostos Fitoquímicos/isolamento & purificação , Salvia miltiorrhiza/química , Estados Unidos
13.
J Nat Prod ; 82(9): 2368-2378, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31442048

RESUMO

A CH3OH-CH2Cl2 (1:1) extract (N025439) of the leaves and twigs of Cryptocarya laevigata furnished eight new compounds, 1-8. Based on extensive 1D and 2D NMR spectroscopic data examination, the new δ-lactone derivatives 1-6 are monoterpene-polyketide hybrids containing a unique spiro[3.5]nonenyl moiety. Their trivial names, cryptolaevilactones G-L, follow those of the related known meroterpenoids cryptolaevilactones A-F. Cryptolaevilactone L (6) contains 11,12-cis-oriented substituents, while the other cryptolaevilactones contain trans-oriented groups. The structure of the linear δ-lactone 7, cryptolaevilactone M, was characterized from various spectroscopic data analysis, and the absolute configuration was determined by total synthesis through stereoselective allylation and Grubbs olefin metathesis. Compound 8 was elucidated to be an ionone derivative with a 3,4-syn-diol functionality.


Assuntos
Cryptocarya/química , Lactonas/química , Monoterpenos/química , Compostos de Espiro/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Folhas de Planta/química , Análise Espectral/métodos
14.
Mar Drugs ; 17(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159276

RESUMO

Currently a few compounds isolated from marine sources have become drugs, mainly directed towards cancer and pain. Compounds from marine sources have exquisite potencies against eukaryotic cells, as they act as protective agents against attack by predators in the marine environment. Their toxicities act as a "double-edged sword" as they are often too toxic for direct use in humans and thus have to be chemically modified. By linking suitably modified compounds to monoclonal antibodies directed against specific epitopes in mammalian cancer cells, they can be delivered to a specific cell type in humans. This review updates and extends an article published in early 2017, demonstrating how by careful chemical modifications, highly toxic compounds, frequently peptidic in nature, can be utilized as antitumor drug candidates. The antibody-drug- conjugates (ADCs) discussed are those that are currently in clinical trials listed in the NIH Clinical Trials Registry as, "currently active, recruiting or in some cases, recently completed". There are also some ADCs discussed that are at the advanced preclinical stage, that in some cases, are repurposing current drug entities, and the review finishes with a short discussion of the aplyronines as potential candidate warheads as a result of scalable synthetic processes.


Assuntos
Toxinas Marinhas/química , Toxinas Marinhas/uso terapêutico , Neoplasias/tratamento farmacológico , Analgésicos/química , Analgésicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Dor/tratamento farmacológico
15.
Bioorg Med Chem Lett ; 29(2): 134-137, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553734

RESUMO

Two new cassaine-type diterpenoids, namely erythrofordins D (1) and E (2), sourced from a Cameroon collection of Erythrophleum suaveolens were isolated and assessed for anti-tumor activity. In the NCI-60 cancer cell assay, erythrofordins D (1) and E (2) were found to be cytotoxic in the low micro molar ranges with a mean GI50 value of 2.45 and 0.71 µM, mean TGI value of 9.77 and 2.29 µM, and a mean LC50 of 26.92 and 11.48 µM for 1 and 2 respectively. Using the COMPARE algorithm, the new compounds were found to have similar NCI-60 response profiles to the known cardiac glycosides hyrcanoside and strophanthin. In addition, in an assay examining the viability and contractile function in human cardiomyocytes derived from induced pluripotent stem-cells, erythrofordins showed cardiotoxicity effects at concentrations as low as 0.03 µg/mL.


Assuntos
Caesalpinia/química , Diterpenos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Trends Cancer ; 4(10): 662-670, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292350

RESUMO

For millenia, plants have been a major source of medications against human and animal diseases. In the case of anticancer agents, a significant number of current agents can trace their source back to nominally plant secondary metabolites, with examples being taxol, vinca alkaloids, camptothecin (CPT), and their modified derivatives. However, it is now becoming apparent that these and other plant-derived materials, plus similar agents from marine sources may well have a microbe in their background. In this short Opinion, evidence for such claims are presented for some of the agents currently in use or in preclinical and clinical trials against cancer.


Assuntos
Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo , Endófitos/metabolismo , Neoplasias/tratamento farmacológico , Plantas/microbiologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Bactérias/metabolismo , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Fungos/metabolismo , Humanos , Maitansina/isolamento & purificação , Maitansina/metabolismo , Maitansina/uso terapêutico , Paclitaxel/isolamento & purificação , Paclitaxel/metabolismo , Paclitaxel/uso terapêutico , Poríferos/microbiologia , Rizosfera , Urocordados/microbiologia
17.
J Nat Prod ; 81(8): 1884-1891, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30106296

RESUMO

Alangium longiflorum is currently in extinction crisis, which will likely severely hamper further phytochemical investigation of this plant species from new collections. A crude extract of leaves of A. longiflorum (N33539), collected for the U.S. National Cancer Institute in 1989, showed potent cancer cell line antiproliferative activity. A phytochemical study resulted in the isolation of 17 secondary metabolites, including two new tetrahydroisoquinoline alkaloids, 8-hydroxytubulosine (1) and 2'- O- trans-sinapoylisoalangiside (2), as well as a new sinapolyloxylupene derivative (3). Using in-house assays and NCI-60 panel screening, compound 1 displayed broad-spectrum inhibitory activity at submicromolar levels against most tested tumor cell lines, except for drug-transporter-overexpressing cells. Compound 1 caused accumulation of sub-G1 cells with no effect on cell cycle progression, suggesting that this substance is an apoptosis inducer.


Assuntos
Alangiaceae/química , Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Espécies em Perigo de Extinção , Fase G1/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
18.
ACS Chem Biol ; 13(9): 2484-2497, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29812901

RESUMO

The US National Cancer Institute's (NCI) Natural Product Repository is one of the world's largest, most diverse collections of natural products containing over 230,000 unique extracts derived from plant, marine, and microbial organisms that have been collected from biodiverse regions throughout the world. Importantly, this national resource is available to the research community for the screening of extracts and the isolation of bioactive natural products. However, despite the success of natural products in drug discovery, compatibility issues that make extracts challenging for liquid handling systems, extended timelines that complicate natural product-based drug discovery efforts and the presence of pan-assay interfering compounds have reduced enthusiasm for the high-throughput screening (HTS) of crude natural product extract libraries in targeted assay systems. To address these limitations, the NCI Program for Natural Product Discovery (NPNPD), a newly launched, national program to advance natural product discovery technologies and facilitate the discovery of structurally defined, validated lead molecules ready for translation will create a prefractionated library from over 125,000 natural product extracts with the aim of producing a publicly-accessible, HTS-amenable library of >1,000,000 fractions. This library, representing perhaps the largest accumulation of natural-product based fractions in the world, will be made available free of charge in 384-well plates for screening against all disease states in an effort to reinvigorate natural product-based drug discovery.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Produtos Biológicos/química , Humanos , National Cancer Institute (U.S.) , Estados Unidos , Fluxo de Trabalho
19.
J Org Chem ; 83(2): 951-963, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29286245

RESUMO

The isolation studies of a crude MeOH/CH2Cl2 (1:1) extract (N005829) of the bark of Laetia corymbulosa yielded 15 new clerodane diterpenes, designated corymbulosins I-W (1-15), as well as four known diterpenes, 16-19. The structures of 1-15 were characterized on the basis of extensive 1D and 2D NMR and HRMS analyses. The absolute configurations of newly isolated compounds 1-15, as well as known 16-19, which were reported previously with only relative configurations, were determined through ECD experiments, X-ray analysis, chemical methods, including Mosher esterification, and comparison of their spectroscopic data. The isolated compounds were evaluated for cytotoxicity against human cancer cell lines. Flow cytometric and immunocytochemical observations of cells treated with cytotoxic clerodanes demonstrated that the chromatin was fragmented and dispersed with formation of apoptotic microtubules.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos Clerodânicos/farmacologia , Casca de Planta/química , Salicaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
20.
J Nat Prod ; 80(4): 1065-1072, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28290698

RESUMO

A bioactive CH3OH-CH2Cl2 (1:1) extract of the bark of Laetia corymbulosa provided five new clerodane diterpenes with an isozuelanin skeleton, designated as corymbulosins D-H (1-5), as well as the known corymbulosins B (6) and C (7), for which the relative configurations were not previously determined. The structures of 1-5 were characterized on the basis of 1D and 2D NMR spectroscopic and HRMS analysis. The absolute configurations of all isolated compounds 1-7 were verified through chemical methods, including modified Mosher esterifications or oxidation of the hydroxy group at C-2, ECD experiments, and spectroscopic data comparison. The isolated compounds were evaluated for antiproliferative activity against a small panel of human cancer cell lines.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Diterpenos Clerodânicos/isolamento & purificação , Casca de Planta/química , Salicaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA