Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
2.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 599-612, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503208

RESUMO

Anthozoan chromoproteins are highly pigmented, diversely coloured and readily produced in recombinant expression systems. While they are a versatile and powerful building block in synthetic biology for applications such as biosensor development, they are not widely used in comparison to the related fluorescent proteins, partly due to a lack of structural characterization to aid protein engineering. Here, high-resolution X-ray crystal structures of four open-source chromoproteins, gfasPurple, amilCP, spisPink and eforRed, are presented. These proteins are dimers in solution, and mutation at the conserved dimer interface leads to loss of visible colour development in gfasPurple. The chromophores are trans and noncoplanar in gfasPurple, amilCP and spisPink, while that in eforRed is cis and noncoplanar, and also emits fluorescence. Like other characterized chromoproteins, gfasPurple, amilCP and eforRed contain an sp2-hybridized N-acylimine in the peptide bond preceding the chromophore, while spisPink is unusual and demonstrates a true sp3-hybridized trans-peptide bond at this position. It was found that point mutations at the chromophore-binding site in gfasPurple that substitute similar amino acids to those in amilCP and spisPink generate similar colours. These features and observations have implications for the utility of these chromoproteins in protein engineering and synthetic biology applications.


Assuntos
Peptídeos , Fluorescência , Proteínas Luminescentes/química , Peptídeos/química
3.
Nat Commun ; 12(1): 7137, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880210

RESUMO

Natural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics. We set out to map the optimal strategy for developing artificial small molecule:protein complexes that function as chemically induced dimerization (CID) systems. Using several starting points, we evolved CID systems controlled by a therapeutic drug methotrexate. Biophysical and structural analysis of methotrexate-controlled CID system reveals the critical role played by drug-induced conformational change in ligand-controlled protein complex assembly. We demonstrate utility of the developed CID by constructing electrochemical biosensors of methotrexate that enable quantification of methotrexate in human serum. Furthermore, using the methotrexate and functionally related biosensor of rapamycin we developed a multiplexed bioelectronic system that can perform repeated measurements of multiple analytes. The presented results open the door for construction of genetically encoded signaling systems for use in bioelectronics and diagnostics, as well as metabolic and signaling network engineering.


Assuntos
Técnicas Biossensoriais/instrumentação , Dimerização , Eletrônica , Metotrexato/química , Eletroquímica , Humanos , Ligantes , Metotrexato/sangue , Peptídeos/química , Polímeros/química , Proteínas/metabolismo
4.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 12): 583-589, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263569

RESUMO

Ssr4 is a yeast protein from Schizosaccharomyces pombe and is an essential part of the chromatin-remodelling [SWI/SNF and RSC (remodelling the structure of chromatin)] complexes found in S. pombe. These complexes (or their homologues) regulate gene expression in eukaryotic organisms, affecting a large number of genes both positively and negatively. The downstream effects are seen in development, and in humans have implications for disease such as cancer. The chromatin structure is altered by modifying the DNA-histone contacts, thus opening up or closing down sections of DNA to specific transcription factors that regulate the transcription of genes. The Ssr4 sequence has little homology to other sequences in the Protein Data Bank, so the structure was solved using an iodine derivative with SAD phasing. The structure of the N-terminal domain is an antiparallel ß-sheet of seven strands with α-helices on one side and random coil on the other. The structure is significantly different to deposited structures and was used as a target in the most recent Critical Assessment of Techniques for Protein Structure Prediction (CASP; https://predictioncenter.org/) competition.


Assuntos
Proteínas de Schizosaccharomyces pombe/química , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , Fluorometria , Iodo/química , Espectrometria de Massas , Modelos Moleculares , Domínios Proteicos , Proteínas de Schizosaccharomyces pombe/metabolismo , Tripsina/química
5.
Acta Crystallogr D Struct Biol ; 76(Pt 9): 889-898, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876064

RESUMO

Cancer is one of the leading causes of mortality in humans, and recent work has focused on the area of immuno-oncology, in which the immune system is used to specifically target cancerous cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an emerging therapeutic target in human cancers owing to its role in degrading cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING). The available structures of ENPP1 are of the mouse enzyme, and no structures are available with anything other than native nucleotides. Here, the first X-ray crystal structures of the human ENPP1 enzyme in an apo form, with bound nucleotides and with two known inhibitors are presented. The availability of these structures and a robust crystallization system will allow the development of structure-based drug-design campaigns against this attractive cancer therapeutic target.


Assuntos
Inibidores Enzimáticos , Proteínas de Membrana/agonistas , Neoplasias/enzimologia , Diester Fosfórico Hidrolases , Pirofosfatases , Inibidores Enzimáticos/química , Humanos , Diester Fosfórico Hidrolases/química , Ligação Proteica , Conformação Proteica , Pirofosfatases/química
6.
EMBO J ; 39(18): e106275, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845033

RESUMO

The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Cristalografia por Raios X , Citocinas/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos , Polarização de Fluorescência , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Ubiquitinas/genética , Células Vero
7.
Nature ; 577(7789): 266-270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827282

RESUMO

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Assuntos
Histona Acetiltransferases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Terciária de Proteína
8.
Struct Dyn ; 6(6): 064701, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768400

RESUMO

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment. In this study, a fragment screen with Surface Plasmon Resonance (SPR) was used to identify a highly ligand-efficient imidazole-containing compound that is bound in the WIN site. The subsequent medicinal chemistry campaign-guided by a suite of high-resolution cocrystal structures with WDR5-progressed the initial hit to a low micromolar binder. One outcome from this study is a moiety that substitutes well for the side chain of arginine; a tripeptide containing one such substitution was resolved in a high resolution structure (1.5 Å) with a binding mode analogous to the native tripeptide. SPR furthermore indicates a similar residence time (k d = ∼0.06 s-1) for these two analogs. This novel scaffold therefore represents a possible means to overcome the potential permeability issues of WDR5 ligands that possess highly basic groups like guanidine. The series reported here furthers the understanding of the WDR5 WIN site and functions as a starting point for the development of more potent WDR5 inhibitors that may serve as cancer therapeutics.

9.
PLoS One ; 13(2): e0192736, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29425231

RESUMO

Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is bound in the active site by a hydrogen bonding network that imparts high substrate specificity. The structure of the inactive Cys175Ser BiuH variant with substrate bound in the active site revealed that an active site cysteine (Cys175), aspartic acid (Asp36) and lysine (Lys142) form a catalytic triad, which is consistent with biochemical studies of BiuH variants. Finally, molecular dynamics simulations highlighted the presence of three channels from the active site to the enzyme surface: a persistent tunnel gated by residues Val218 and Gln215 forming a potential substrate channel and two smaller channels formed by Val28 and a mobile loop (including residues Phe41, Tyr47 and Met51) that may serve as channels for co-product (ammonia) or co-substrate (water).


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Biureto/química , Rhizobium leguminosarum/enzimologia , Triazinas/metabolismo , Sequência de Aminoácidos , Desaminação , Simulação de Dinâmica Molecular , Rhizobium leguminosarum/metabolismo , Especificidade por Substrato
10.
Sci Rep ; 6: 35198, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734909

RESUMO

Chemoreceptors enable bacteria to detect chemical signals in the environment and navigate towards niches that are favourable for survival. The sensor domains of chemoreceptors function as the input modules for chemotaxis systems, and provide sensory specificity by binding specific ligands. Cache-like domains are the most common extracellular sensor module in prokaryotes, however only a handful have been functionally or structurally characterised. Here, we have characterised a chemoreceptor Cache-like sensor domain (PscD-SD) from the plant pathogen Pseudomonas syringae pv. actinidiae (Psa). High-throughput fluorescence thermal shift assays, combined with isothermal thermal titration calorimetry, revealed that PscD-SD binds specifically to C2 (glycolate and acetate) and C3 (propionate and pyruvate) carboxylates. We solved the structure of PscD-SD in complex with propionate using X-ray crystallography. The structure reveals the key residues that comprise the ligand binding pocket and dictate the specificity of this sensor domain for C2 and C3 carboxylates. We also demonstrate that all four carboxylate ligands are chemoattractants for Psa, but only two of these (acetate and pyruvate) are utilisable carbon sources. This result suggests that in addition to guiding the bacteria towards nutrients, another possible role for carboxylate sensing is in locating potential sites of entry into the host plant.


Assuntos
Ácidos Carboxílicos/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia/fisiologia , Pseudomonas syringae/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X/métodos , Ligantes
11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3320-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478849

RESUMO

Although part of the coenzyme A pathway, vanin 1 (also known as pantetheinase) sits on the cell surface of many cell types as an ectoenzyme, catalyzing the breakdown of pantetheine to pantothenic acid (vitamin B5) and cysteamine, a strong reducing agent. Vanin 1 was initially discovered as a protein involved in the homing of leukocytes to the thymus. Numerous studies have shown that vanin 1 is involved in inflammation, and more recent studies have shown a key role in metabolic disease. Here, the X-ray crystal structure of human vanin 1 at 2.25 Šresolution is presented, which is the first reported structure from the vanin family, as well as a crystal structure of vanin 1 bound to a specific inhibitor. These structures illuminate how vanin 1 can mediate its biological roles by way of both enzymatic activity and protein-protein interactions. Furthermore, it sheds light on how the enzymatic activity is regulated by a novel allosteric mechanism at a domain interface.


Assuntos
Amidoidrolases/química , Amidoidrolases/antagonistas & inibidores , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
12.
J Med Chem ; 57(22): 9612-26, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25357262

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 Å upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.


Assuntos
Difosfotransferases/antagonistas & inibidores , Difosfotransferases/química , Ácido Fólico/biossíntese , Guanina/química , Staphylococcus aureus/enzimologia , Trifosfato de Adenosina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/química , Íons , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Conformação Proteica , Pterinas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 565-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531490

RESUMO

The X-ray crystal structure of the complex of protein tyrosine phosphatase 1B with nitrate anion has been determined and modelled quantum-mechanically. Two protomers were present in the structure, one with the mechanistically important WPD loop closed and the other with this loop open. Nitrate was observed bound to each protomer, making close contacts with the S atom of the catalytic cysteine and a tyrosine residue from a crystallographically related protomer.


Assuntos
Mimetismo Molecular , Nitratos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ligantes , Modelos Moleculares , Nitratos/metabolismo , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
14.
J Comput Aided Mol Des ; 28(4): 347-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532034

RESUMO

Tremendous gains and novel methods are often developed when people are challenged to do something new or difficult. This process is enhanced when people compete against each other-this can be seen in sport as well as in science and technology (e.g. the space race). The SAMPL challenges, like the CASP challenges, aim to challenge modellers and software developers to develop new ways of looking at molecular interactions so the community as a whole can progress in the accurate prediction of these interactions. In order for this challenge to occur, data must be supplied so the prospective test can be done. We have supplied unpublished data related to a drug discovery program run several years ago on HIV integrase for the SAMPL4 challenge. This paper describes the methods used to obtain these data and the chemistry involved.


Assuntos
Desenho de Fármacos , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV/enzimologia , Desenho Assistido por Computador , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/virologia , Integrase de HIV/química , Humanos , Modelos Moleculares , Ligação Proteica , Software
15.
Plant Cell ; 24(11): 4525-38, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23136372

RESUMO

Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Vitis/enzimologia , Aminoácidos/metabolismo , Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , Cristalografia por Raios X , Inibidores Enzimáticos , Frutas/química , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Cinética , Ligases/antagonistas & inibidores , Ligases/química , Ligases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Vitis/química , Vitis/genética
16.
PLoS One ; 7(7): e40147, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808106

RESUMO

A fragment-based screen against human immunodeficiency virus type 1 (HIV) integrase led to a number of compounds that bound to the lens epithelium derived growth factor (LEDGF) binding site of the integrase catalytic core domain. We determined the crystallographic structures of complexes of the HIV integrase catalytic core domain for 10 of these compounds and quantitated the binding by surface plasmon resonance. We demonstrate that the compounds inhibit the interaction of LEDGF with HIV integrase in a proximity AlphaScreen assay, an assay for the LEDGF enhancement of HIV integrase strand transfer and in a cell based assay. The compounds identified represent a potential framework for the development of a new series of HIV integrase inhibitors that do not bind to the catalytic site of the enzyme.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Integrase de HIV/química , HIV/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fragmentos de Peptídeos/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Inibidores Enzimáticos/química , HIV/efeitos dos fármacos , Integrase de HIV/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
17.
PLoS One ; 7(1): e29444, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276115

RESUMO

The first structural and biophysical data on the folate biosynthesis pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), from the pathogen Staphylococcus aureus is presented. HPPK is the second essential enzyme in the pathway catalysing the pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl-7,8-dihydropterin, HMDP). In-silico screening identified 8-mercaptoguanine which was shown to bind with an equilibrium dissociation constant, K(d), of ∼13 µM as measured by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). An IC(50) of ∼41 µM was determined by means of a luminescent kinase assay. In contrast to the biological substrate, the inhibitor has no requirement for magnesium or the ATP cofactor for competitive binding to the substrate site. The 1.65 Å resolution crystal structure of the inhibited complex showed that it binds in the pterin site and shares many of the key intermolecular interactions of the substrate. Chemical shift and (15)N heteronuclear NMR measurements reveal that the fast motion of the pterin-binding loop (L2) is partially dampened in the SaHPPK/HMDP/α,ß-methylene adenosine 5'-triphosphate (AMPCPP) ternary complex, but the ATP loop (L3) remains mobile on the µs-ms timescale. In contrast, for the SaHPPK/8-mercaptoguanine/AMPCPP ternary complex, the loop L2 becomes rigid on the fast timescale and the L3 loop also becomes more ordered--an observation that correlates with the large entropic penalty associated with inhibitor binding as revealed by ITC. NMR data, including (15)N-(1)H residual dipolar coupling measurements, indicate that the sulfur atom in the inhibitor is important for stabilizing and restricting important motions of the L2 and L3 catalytic loops in the inhibited ternary complex. This work describes a comprehensive analysis of a new HPPK inhibitor, and may provide a foundation for the development of novel antimicrobials targeting the folate biosynthetic pathway.


Assuntos
Proteínas de Bactérias/química , Difosfotransferases/química , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/metabolismo , Difosfotransferases/metabolismo , Espectroscopia de Ressonância Magnética , Pterinas/metabolismo
18.
Ann Clin Biochem ; 48(Pt 5): 438-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795408

RESUMO

BACKGROUND: Falsely decreased serum alphafetoprotein (AFP) concentrations are reported in the autoDELFIA(®) hAFP immunoassay due to interference by complement. AFP is measured, using this assay, as part of second-trimester and integrated Down's syndrome screening tests. Decreased AFP concentrations increase the calculated risk of Down's syndrome; therefore falsely low AFP, due to assay interference, may artificially increase a patient's risk, and have the potential to cause false screen positive results. It was our aim to assess whether negative interference in the autoDELFIA(®) hAFP assay was a cause of very low AFP concentrations, and to examine the effect of falsely decreased concentrations on the calculated risk of Down's syndrome. METHODS: Three hundred and twenty-three sequential Down's screening serum samples with very low serum AFP concentration (<15 KU/L) using the autoDELFIA(®) hAFP immunoassay were selected and AFP re-measured using the E170 AFP immunoassay. RESULTS: Interference was detected in nine samples (from eight patients) on the basis of discordant AFP concentrations. The interference decreased following storage of samples at 4°C to deplete complement. Use of the falsely low AFP concentrations to calculate risk of Down's syndrome resulted in significantly increased calculated risk compared with complement depleted results. CONCLUSIONS: Laboratories should be aware that falsely low AFP concentrations due to complement interference may be obtained using the autoDELFIA(®) hAFP immunoassay. We have shown that falsely low AFP concentrations increase the calculated risk of Down's syndrome. This is a potential cause of false Down's syndrome screen positive results.


Assuntos
Síndrome de Down/diagnóstico , Diagnóstico Pré-Natal/métodos , alfa-Fetoproteínas/metabolismo , Proteínas do Sistema Complemento/química , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Humanos , Imunoensaio/métodos , Programas de Rastreamento/métodos , Gravidez , Segundo Trimestre da Gravidez , Medição de Risco , alfa-Fetoproteínas/química
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1572-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21139198

RESUMO

Human vascular adhesion protein 1 (VAP-1) is involved in lymphocyte-endothelial cell adhesion and has been implicated in many human inflammatory diseases. VAP-1 is a member of the copper amine oxidase family of enzymes with a trihydroxyphenylalanine quinone (TPQ) cofactor. Previously characterized crystals of VAP-1 suffered from anisotropy and contained disordered regions; in addition, one form was consistently twinned. In an effort to grow crystals that diffracted to higher resolution for inhibitor-binding studies, a construct with an N-terminal deletion was made and expressed in the Chinese hamster ovary (CHO) glycosylation mutant cell line Lec8. Screening produced crystals that displayed some anisotropy and contained seven molecules per asymmetric unit. These crystals belonged to space group C2, with unit-cell parameters a=394.5, b=115.8, c=179.3 Å, ß=112.3°. The structure was refined to a resolution of 2.9 Å, with Rcryst and Rfree values of 0.250 and 0.286, respectively.


Assuntos
Amina Oxidase (contendo Cobre)/química , Moléculas de Adesão Celular/química , Animais , Células CHO , Domínio Catalítico , Cricetinae , Cricetulus , Cristalografia por Raios X , Cisteína/química , Dissulfetos/química , Glicosilação , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
20.
Mol Cancer Ther ; 9(6): 1809-19, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20515953

RESUMO

Elevated expression of insulin-like growth factor-II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon, and liver cancer. As IGF-II can deliver a mitogenic signal through both IGF-IR and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is a potential alternative option to IGF-IR-directed agents. Using a Fab-displaying phage library and a biotinylated precursor form of IGF-II (1-104 amino acids) as a target, we isolated Fabs specific for the E-domain COOH-terminal extension form of IGF-II and for mature IGF-II. One of these Fabs that bound to both forms of IGF-II was reformatted into a full-length IgG, expressed, purified, and subjected to further analysis. This antibody (DX-2647) displayed a very high affinity for IGF-II/IGF-IIE (K(D) value of 49 and 10 pmol/L, respectively) compared with IGF-I (approximately 10 nmol/L) and blocked binding of IGF-II to IGF-IR, IR-A, a panel of insulin-like growth factor-binding proteins, and the mannose-6-phosphate receptor. A crystal complex of the parental Fab of DX-2647 bound to IGF-II was resolved to 2.2 A. DX-2647 inhibited IGF-II and, to a lesser extent, IGF-I-induced receptor tyrosine phosphorylation, cellular proliferation, and both anchorage-dependent and anchorage-independent colony formation in various cell lines. In addition, DX-2647 slowed tumor progression in the Hep3B xenograft model, causing decreased tumoral CD31 staining as well as reduced IGF-IIE and IGF-IR phosphorylation levels. Therefore, DX-2647 offers an alternative approach to targeting IGF-IR, blocking IGF-II signaling through both IGF-IR and IR-A.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Fator de Crescimento Insulin-Like II/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Animais , Anticorpos Monoclonais/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Humanos , Imuno-Histoquímica , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA