Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Commun ; 15(1): 5392, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918391

RESUMO

DNA double-strand breaks (DSBs), such as those produced by radiation and radiomimetics, are amongst the most toxic forms of cellular damage, in part because they involve extensive oxidative modifications at the break termini. Prior to completion of DSB repair, the chemically modified termini must be removed. Various DNA processing enzymes have been implicated in the processing of these dirty ends, but molecular knowledge of this process is limited. Here, we demonstrate a role for the metallo-ß-lactamase fold 5'-3' exonuclease SNM1A in this vital process. Cells disrupted for SNM1A manifest increased sensitivity to radiation and radiomimetic agents and show defects in DSB damage repair. SNM1A is recruited and is retained at the sites of DSB damage via the concerted action of its three highly conserved PBZ, PIP box and UBZ interaction domains, which mediate interactions with poly-ADP-ribose chains, PCNA and the ubiquitinated form of PCNA, respectively. SNM1A can resect DNA containing oxidative lesions induced by radiation damage at break termini. The combined results reveal a crucial role for SNM1A to digest chemically modified DNA during the repair of DSBs and imply that the catalytic domain of SNM1A is an attractive target for potentiation of radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Reparo do DNA , Exodesoxirribonucleases , Humanos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , DNA/metabolismo , DNA/genética , Ubiquitinação , Proteínas de Ciclo Celular
2.
Chem Sci ; 15(21): 8227-8241, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817593

RESUMO

The three human SNM1 metallo-ß-lactamase fold nucleases (SNM1A-C) play key roles in DNA damage repair and in maintaining telomere integrity. Genetic studies indicate that they are attractive targets for cancer treatment and to potentiate chemo- and radiation-therapy. A high-throughput screen for SNM1A inhibitors identified diverse pharmacophores, some of which were shown by crystallography to coordinate to the di-metal ion centre at the SNM1A active site. Structure and turnover assay-guided optimization enabled the identification of potent quinazoline-hydroxamic acid containing inhibitors, which bind in a manner where the hydroxamic acid displaces the hydrolytic water and the quinazoline ring occupies a substrate nucleobase binding site. Cellular assays reveal that SNM1A inhibitors cause sensitisation to, and defects in the resolution of, cisplatin-induced DNA damage, validating the tractability of MBL fold nucleases as cancer drug targets.

3.
Antimicrob Agents Chemother ; 68(1): e0080023, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092671

RESUMO

Multi-drug resistant (MDR) Acinetobacter baumannii is emerging as a pathogen of increasing prevalence and concern. Infections associated with this Gram-negative pathogen are often associated with increased morbidity and mortality and few therapeutic options. The ß-lactamase inhibitor sulbactam used commonly in combination with ampicillin demonstrates intrinsic antibacterial activity against A. baumannii acting as an inhibitor of PBP1 and PBP3, which participate in cell wall biosynthesis. The production of ß-lactamases, particularly class D oxacillinases, however, has limited the utility of sulbactam resorting to increased doses and the need for alternate therapies. Durlobactam is a non-ß-lactam ß-lactamase inhibitor that demonstrates broad ß-lactamase inhibition including class D enzymes produced by A. baumannii and has shown potent in vitro activity against MDR A. baumannii, particularly carbapenem-resistant isolates in susceptibility and pharmacodynamic model systems. The objective of this study is to evaluate the exposure-response relationship of sulbactam and durlobactam in combination using in vivo neutropenic thigh and lung models to establish PK/PD exposure magnitudes to project clinically effective doses. Utilizing established PK/PD determinants of %T>MIC and AUC/MIC for sulbactam and durlobactam, respectively, non-linear regressional analysis of drug exposure was evaluated relative to the 24-hour change in bacterial burden (log10 CFU/g). Co-modeling of the data across multiple strains exhibiting a broad range of MIC susceptibility suggested net 1-log10 CFU/g0 reduction can be achieved when sulbactam T>MIC exceeds 50% of the dosing interval and durlobactam AUC/MIC is 10. These data were ultimately used to support sulbactam-durlobactam dose selection for Phase 3 clinical trials.


Assuntos
Acinetobacter baumannii , Sulbactam , Sulbactam/uso terapêutico , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
4.
Nucleic Acids Res ; 51(18): 9920-9937, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37665033

RESUMO

Polymerase theta (Polθ) acts in DNA replication and repair, and its inhibition is synthetic lethal in BRCA1 and BRCA2-deficient tumor cells. Novobiocin (NVB) is a first-in-class inhibitor of the Polθ ATPase activity, and it is currently being tested in clinical trials as an anti-cancer drug. Here, we investigated the molecular mechanism of NVB-mediated Polθ inhibition. Using hydrogen deuterium exchange-mass spectrometry (HX-MS), biophysical, biochemical, computational and cellular assays, we found NVB is a non-competitive inhibitor of ATP hydrolysis. NVB sugar group deletion resulted in decreased potency and reduced HX-MS interactions, supporting a specific NVB binding orientation. Collective results revealed that NVB binds to an allosteric site to block DNA binding, both in vitro and in cells. Comparisons of The Cancer Genome Atlas (TCGA) tumors and matched controls implied that POLQ upregulation in tumors stems from its role in replication stress responses to increased cell proliferation: this can now be tested in fifteen tumor types by NVB blocking ssDNA-stimulation of ATPase activity, required for Polθ function at replication forks and DNA damage sites. Structural and functional insights provided in this study suggest a path for developing NVB derivatives with improved potency for Polθ inhibition by targeting ssDNA binding with entropically constrained small molecules.


Assuntos
Adenosina Trifosfatases , DNA Polimerase teta , Neoplasias , Novobiocina , Humanos , Adenosina Trifosfatases/metabolismo , Replicação do DNA , DNA de Cadeia Simples , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Novobiocina/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37197610

RESUMO

Purpose: Triple negative breast cancer (TNBC) is a breast carcinoma subtype that neither expresses estrogen (ER) and progesterone receptors (PR) nor the human epidermal growth factor receptor 2 (HER2). Patients with TNBC have been shown to have poorer outcomes mainly owing to the limited treatment options available. However, some studies have shown TNBC tumors expressing androgen receptors (AR), raising hopes of its prognostic role. Patients and Methods: This retrospective study investigated the expression of AR in TNBC and its relationship with known patient demographics, tumor and survival characteristics. From the records of 205 TNBC patients, 36 had available archived tissue samples eligible for AR staining. For statistical purposes, tumors were classified as either "positive" or "negative" for AR expression. The nuclear expression of AR was scored by measuring the percentage of stained tumor cells and its staining intensity. Results: AR was expressed by 50% of the tissue samples in our TNBC cohort. The relationship between AR status with age at the time of TNBC diagnosis was statistically significant, with all AR positive TNBC patients being greater than 50 years old (vs 72.2% in AR negative TNBC). Also, the relationship between AR status and type of surgery received was statistically significant. There were no statistically significant associations between AR status with other tumor characteristics including "TNM status", tumor grade or treatments received. There was no statistically significant difference in median survival between AR negative and AR positive TNBC patients (3.5 vs 3.1 years; p = 0.581). The relationship between OS time and AR status (p = 0.581), type of surgery (p = 0.061) and treatments (p = 0.917) were not statistically significant. Conclusion: The androgen receptor may be an important prognostic marker in TNBC, with further research warranted. This research may benefit future studies investigating receptor-targeted therapies in TNBC.

6.
Nat Commun ; 13(1): 4610, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941149

RESUMO

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2
7.
Nat Microbiol ; 7(8): 1180-1188, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35836002

RESUMO

SARS-CoV-2 variants may threaten the effectiveness of vaccines and antivirals to mitigate serious COVID-19 disease. This is of most concern in clinically vulnerable groups such as older adults. We analysed 72 sera samples from 37 individuals, aged 70-89 years, vaccinated with two doses of BNT162b2 (Pfizer-BioNTech) 3 weeks apart, for neutralizing antibody responses to wildtype SARS-CoV-2. Between 3 and 20 weeks after the second vaccine dose, neutralizing antibody titres fell 4.9-fold to a median titre of 21.3 (neutralization dose 80%), with 21.6% of individuals having no detectable neutralizing antibodies at the later time point. Next, we examined neutralization of 21 distinct SARS-CoV-2 variant spike proteins with these sera, and confirmed substantial antigenic escape, especially for the Omicron (B.1.1.529, BA.1/BA.2), Beta (B.1.351), Delta (B.1.617.2), Theta (P.3), C.1.2 and B.1.638 spike variants. By combining pseudotype neutralization with specific receptor-binding domain (RBD) enzyme-linked immunosorbent assays, we showed that changes to position 484 in the spike RBD were mainly responsible for SARS-CoV-2 neutralizing antibody escape. Nineteen sera from the same individuals boosted with a third dose of BNT162b2 contained higher neutralizing antibody titres, providing cross-protection against Omicron BA.1 and BA.2. Despite SARS-CoV-2 immunity waning over time in older adults, booster vaccines can elicit broad neutralizing antibodies against a large number of SARS-CoV-2 variants in this clinically vulnerable cohort.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Glicoproteínas de Membrana/química , Testes de Neutralização , SARS-CoV-2/genética , Proteínas do Envelope Viral/química
8.
Commun Biol ; 5(1): 409, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505237

RESUMO

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/terapia , Quirópteros/metabolismo , Humanos , Imunização Passiva , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19
9.
Res Sq ; 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35194602

RESUMO

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use. However, SARS-CoV-2 continues to circulate and consequently, variants of concern (VoCs) have been detected, with substitutions in the S protein that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial over boosting with vaccines encoding the ancestral S protein, even though current real-world data is suggesting good efficacy against hospitalization and death following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluated the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. We then investigated the efficacy of a single dose of AZD2816 or AZD1222 against the Omicron VoC. As seen previously, minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 5 days post inoculation, in contrast to lungs of control animals. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

10.
Clin Med (Lond) ; 21(5): e531-e532, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34507940

RESUMO

We present a case of black pleural fluid following thoracic trauma. The unusual dark colour most strikingly resembled soy sauce as independently commented upon by multiple treating physicians. The black colouration could not be fully accounted for by haemothorax or cholethorax, so other differential diagnoses were investigated, including Aspergillus niger infection and malignant melanoma. The cause, however, was thought to be due to staining of the fluid with carbon deposited in the pleural space from the non-volatilised impurities from smoking crack cocaine. A novel use of a point-of-care urine toxicology assay confirmed the presence of cocaine in the pleural fluid. Considering a broad range of differential diagnoses is needed to avoid missing important causes of unusual pleural effusions.


Assuntos
Melanoma , Derrame Pleural , Neoplasias Cutâneas , Alimentos de Soja , Adulto , Diagnóstico Diferencial , Humanos , Masculino , Derrame Pleural/diagnóstico por imagem
11.
Nat Commun ; 12(1): 4848, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381037

RESUMO

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Assuntos
Metiltransferases/química , RNA Helicases/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
12.
Cell Death Dis ; 12(2): 165, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558481

RESUMO

The human MRE11/RAD50/NBS1 (MRN) complex plays a crucial role in sensing and repairing DNA DSB. MRE11 possesses dual 3'-5' exonuclease and endonuclease activity and forms the core of the multifunctional MRN complex. We previously identified a C-terminally truncated form of MRE11 (TR-MRE11) associated with post-translational MRE11 degradation. Here we identified SPRTN as the essential protease for the formation of TR-MRE11 and characterised the role of this MRE11 form in its DNA damage response (DDR). Using tandem mass spectrometry and site-directed mutagenesis, the SPRTN-dependent cleavage site for MRE11 was identified between 559 and 580 amino acids. Despite the intact interaction of TR-MRE11 with its constitutive core complex proteins RAD50 and NBS1, both nuclease activities of truncated MRE11 were dramatically reduced due to its deficient binding to DNA. Furthermore, lack of the MRE11 C-terminal decreased HR repair efficiency, very likely due to abolished recruitment of TR-MRE11 to the sites of DNA damage, which consequently led to increased cellular radiosensitivity. The presence of this DNA repair-defective TR-MRE11 could explain our previous finding that the high MRE11 protein expression by immunohistochemistry correlates with improved survival following radical radiotherapy in bladder cancer patients.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Tolerância a Radiação , Neoplasias da Bexiga Urinária/radioterapia , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Proteínas de Ligação a DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Células HEK293 , Humanos , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteólise , Especificidade por Substrato , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
13.
Nat Commun ; 12(1): 542, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483491

RESUMO

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Peptídeos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Linhagem Celular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Suínos
14.
Life Sci Alliance ; 4(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199508

RESUMO

Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517-1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional ß-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.


Assuntos
Domínio Catalítico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/química , Helicase da Síndrome de Werner/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Cristalização , DNA/metabolismo , Dano ao DNA/genética , Inativação Gênica , Células HCT116 , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transfecção , Zinco/metabolismo , Quinase 1 Polo-Like
15.
Essays Biochem ; 64(5): 819-830, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33095241

RESUMO

Helicases are enzymes that use the energy derived from ATP hydrolysis to catalyze the unwinding of DNA or RNA. The RecQ family of helicases is conserved through evolution from prokaryotes to higher eukaryotes and plays important roles in various DNA repair pathways, contributing to the maintenance of genome integrity. Despite their roles as general tumor suppressors, there is now considerable interest in exploiting RecQ helicases as synthetic lethal targets for the development of new cancer therapeutics. In this review, we summarize the latest developments in the structural and mechanistic study of RecQ helicases and discuss their roles in various DNA repair pathways. Finally, we consider the potential to exploit RecQ helicases as therapeutic targets and review the recent progress towards the development of small molecules targeting RecQ helicases as cancer therapeutics.


Assuntos
Reparo do DNA , Neoplasias/terapia , RecQ Helicases/metabolismo , Instabilidade Genômica , Humanos , Neoplasias/genética
16.
NPJ Vaccines ; 5(1): 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793398

RESUMO

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

17.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467316

RESUMO

The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1 To systematically probe genetic vulnerabilities in the absence of STAG2, we have performed genome-wide CRISPR screens in isogenic cell lines and identified STAG1 as the most prominent and selective dependency of STAG2-deficient cells. Using an inducible degron system, we show that chemical genetic degradation of STAG1 protein results in the loss of sister chromatid cohesion and rapid cell death in STAG2-deficient cells, while sparing STAG2-wild-type cells. Biochemical assays and X-ray crystallography identify STAG1 regions that interact with the RAD21 subunit of the cohesin complex. STAG1 mutations that abrogate this interaction selectively compromise the viability of STAG2-deficient cells. Our work highlights the degradation of STAG1 and inhibition of its interaction with RAD21 as promising therapeutic strategies. These findings lay the groundwork for the development of STAG1-directed small molecules to exploit synthetic lethality in STAG2-mutated tumors.


Assuntos
Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Neoplasias/genética , Proteínas Nucleares/genética , Mutações Sintéticas Letais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Inativação Gênica , Marcação de Genes , Estudo de Associação Genômica Ampla , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteólise , Relação Estrutura-Atividade , Coesinas
18.
Hum Mutat ; 40(5): 566-577, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30817846

RESUMO

There is still around 50% of the familial breast cancer (BC) cases with an undefined genetic cause, here we have used next-generation sequencing (NGS) technology to identify new BC susceptibility genes. This approach has led to the identification of RECQL5, a member of RECQL-helicases family, as a new BC susceptibility candidate, which deserves further study. We have used a combination of whole exome sequencing in a family negative for mutations in BRCA1/2 throughout (BRCAX), in which we found a probably deleterious variant in RECQL5, and targeted NGS of the complete coding regions and exon-intron boundaries of the candidate gene in 699 BC Spanish BRCAX families and 665 controls. Functional characterization and in silico inference of pathogenicity were performed to evaluate the deleterious effect of detected variants. We found at least seven deleterious or likely deleterious variants among the cases and only one in controls. These results prompt us to propose RECQL5 as a gene that would be worth to analyze in larger studies to explore its possible implication in BC susceptibility.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Predisposição Genética para Doença , RecQ Helicases/genética , RecQ Helicases/metabolismo , Processamento Alternativo , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Variação Genética , Humanos , Perda de Heterozigosidade , Família Multigênica , Linhagem , Sequenciamento do Exoma
19.
Mol Cell ; 73(3): 621-638.e17, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554943

RESUMO

Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Antineoplásicos/química , Azepinas/química , Proteínas de Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células K562 , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/química
20.
Virology ; 522: 260-270, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055516

RESUMO

The foot-and-mouth disease virus capsid precursor, P1-2A, is cleaved by the 3C protease (3Cpro) to VP0, VP3, VP1 and 2A. The P1-2A precursor (wt or mutant) was expressed alone or with 3Cpro and processing of P1-2A was determined. The VP2 K217R and VP3 I2P substitutions (near the VP0/VP3 junction) strongly reduced the processing at this junction by 3Cpro while the substitution VP2 K217E blocked cleavage. At the VP3/VP1 junction, the substitutions VP3 Q2221P and VP1 T1P each severely inhibited processing at this site. Blocking cleavage at either junction did not prevent processing elsewhere in P1-2A. These modifications were also introduced into full-length FMDV RNA; only wt and the VP2 K217R mutant were viable. Uncleaved VP0-VP3 and the processed products were observed within cells infected with the mutant virus. The VP0-VP3 was not incorporated into empty capsids or virus particles. The three junctions within P1-2A are processed by 3Cpro independently.


Assuntos
Proteínas do Capsídeo/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/fisiologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA