Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776045

RESUMO

17α-Estradiol (17αE2), a less-feminising enantiomer of 17ß-estradiol, has been shown to prolong lifespan and improve metabolic health in a sex-specific manner in male, but not in female mice. Recent studies have demonstrated the pivotal role of estrogen receptor α (ERα) in mediating the effects of 17αE2 on metabolic health. However, the specific tissues and/or neuronal signalling pathways that 17αE2 acts through remain to be elucidated. ERα expression in glutamatergic and GABAergic neurons (principal excitatory and inhibitory neurons respectively) in the hypothalamus is essential for estradiol signalling. Therefore, we hypothesised that knocking out ERα from one of these neuronal populations would attenuate the established beneficial metabolic effects of 17αE2 in male mice exposed to a high fat diet. To test this hypothesis we used two established brain specific ERα KO models, targeting either glutamatergic or GABAergic neurons (Vglut2/Vgat-ERαKO). We show that both of these ERα KO models exhibit a strong reduction in ERα expression in the arcuate nucleus of the hypothalamus, a control centre for metabolic regulation. Deletion of ERα from GABAergic neurons significantly diminished the effect of 17αE2 on body weight relative to controls, although these animals still show metabolic benefits with 17αE2 treatment. The response to 17αE2 was unaffected by ERα deletion in glutamatergic neurons. Our results support a benefit of 17αE2 treatment in protection against metabolic dysfunction, but these effects do not depend on exclusive ERα expression in glutamatergic and GABAergic neurons and persist when ERα expression is strongly reduced in the arcuate nucleus of the hypothalamus.

2.
J Endocrinol ; 253(2): 53-62, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35099409

RESUMO

Female anti-Müllerian hormone (AMH) overexpressing (Thy1.2-AMHTg/0) mice experience fetal resorption (miscarriage) by mid-gestation. This study examined whether the ovary, uterine implantation sites and hypothalamus are potential sites of AMH action, as AMH type-2 receptor (AMHR2) expression is reported in each tissue. Pregnancy in Thy1.2-AMHTg/0 mice was compared to wild-type (WT) mice via histological examination of implantation sites, hormone assays, embryo culture and embryo transfer. Uterine AMH and AMHR2 expression was examined by RT-qPCR and immunohistochemistry. The first signs of fetal resorption in the Thy1.2-AMHTg/0 dams occurred at embryonic day 9.5 (E9.5) with 100% of fetuses resorbing by E13.5. Cultured embryos from Thy1.2-AMHTg/0 dams had largely normal developmental rates but a small proportion experienced a minor developmental delay relative to embryos from WT dams. However, embryos transferred from WT donor females always failed to survive to term when transferred into Thy1.2-AMHTg/0 dams. Amh and Amhr2 mRNA was detected in the gravid uterus but at very low levels relative to expression in the ovaries. Progesterone and estradiol levels were not significantly different between WT and Thy1.2-AMHTg/0 dams during pregnancy but luteinizing hormone (LH) levels were significantly elevated in Thy1.2-AMHTg/0 dams at E9.5 and E13.5 relative to WT dams. Collectively, these experiments suggest that AMH overexpression does not cause fetal resorption through an effect on oocytes or preimplantation embryo development. The Thy1.2-AMHTg/0 fetal resorption phenotype is nearly identical to that of transgenic LH overexpression models, suggesting that neuroendocrine mechanisms may be involved in the cause of the miscarriage.


Assuntos
Aborto Espontâneo , Hormônio Antimülleriano , Aborto Espontâneo/metabolismo , Animais , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Transferência Embrionária , Feminino , Reabsorção do Feto/metabolismo , Humanos , Camundongos , Oócitos/metabolismo , Gravidez
3.
Am J Hum Genet ; 97(6): 837-47, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637977

RESUMO

The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (MET(Δ14)) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the MET(Δ14) mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Éxons , Mutação em Linhagem Germinativa , Osteogênese/genética , Periósteo/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Adulto , Sequência de Bases , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Diferenciação Celular , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Osteoblastos/metabolismo , Osteoblastos/patologia , Linhagem , Periósteo/crescimento & desenvolvimento , Periósteo/patologia , Cultura Primária de Células , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-met/metabolismo , Splicing de RNA
4.
FASEB J ; 29(5): 1999-2009, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667221

RESUMO

CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/genética , Citocinese/fisiologia , Imunofluorescência , Heterozigoto , Homozigoto , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/genética
5.
Dev Dyn ; 244(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294789

RESUMO

BACKGROUND: The interplay between Notch and Vegf signaling regulates angiogenesis in the embryo. Notch signaling limits the responsiveness of endothelial cells to Vegf to control sprouting. Despite the importance of this regulatory relationship, much remains to be understood about extrinsic factors that modulate the pathway. RESULTS: During a forward genetic screen for novel regulators of lymphangiogenesis, we isolated a mutant with reduced lymphatic vessel development. This mutant also exhibited hyperbranching arteries, reminiscent of Notch pathway mutants. Positional cloning identified a missense mutation in the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (cad) gene. Cad is essential for UDP biosynthesis, which is necessary for protein glycosylation and de novo biosynthesis of pyrimidine-based nucleotides. Using a transgenic reporter of Notch activity, we demonstrate that Notch signaling is significantly reduced in cad(hu10125) mutants. In this context, genetic epistasis showed that increased endothelial cell responsiveness to Vegfc/Vegfr3 signaling drives excessive artery branching. CONCLUSIONS: These findings suggest important posttranslational modifications requiring Cad as an unappreciated mechanism that regulates Notch/Vegf signaling during angiogenesis.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Animais , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Glicosilação , Receptores Notch/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Development ; 131(19): 4857-69, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15342468

RESUMO

Somites give rise to a number of different embryonic cell types, including the precursors of skeletal muscle populations. The lateral aspect of amniote and fish somites have been shown to give rise specifically to hypaxial muscle, including the appendicular muscle that populates fins and limbs. We have investigated the morphogenetic basis for formation of specific hypaxial muscles within the zebrafish embryo and larvae. Transplantation experiments have revealed a developmentally precocious commitment of cells derived from pectoral fin level somites to forming hypaxial and specifically appendicular muscle. The fate of transplanted somites cannot be over-ridden by local inductive signals, suggesting that somitic tissue may be fixed at an early point in their developmental history to produce appendicular muscle. We further show that this restriction in competence is mirrored at the molecular level, with the exclusive expression of the receptor tyrosine kinase met within somitic regions fated to give rise to appendicular muscle. Loss-of-function experiments reveal that Met and its ligand, hepatocyte growth factor, are required for the correct morphogenesis of the hypaxial muscles in which met is expressed. Furthermore, we demonstrate a requirement for Met signaling in the process of proneuromast deposition from the posterior lateral line primordia.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento de Hepatócito/genética , Morfogênese , Músculo Esquelético/embriologia , Filogenia , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais , Somitos/metabolismo , Somitos/transplante , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA