Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2308760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306610

RESUMO

Bioengineering strategies for the fabrication of implantable lymphoid structures mimicking lymph nodes (LNs) and tertiary lymphoid structures (TLS) could amplify the adaptive immune response for therapeutic applications such as cancer immunotherapy. No method to date has resulted in the consistent formation of high endothelial venules (HEVs), which is the specialized vasculature responsible for naïve T cell recruitment and education in both LNs and TLS. Here orthogonal induced differentiation of human pluripotent stem cells carrying a regulatable ETV2 allele is used to rapidly and efficiently induce endothelial differentiation. Assembly of embryoid bodies combining primitive inducible endothelial cells and primary human LN fibroblastic reticular cells results in the formation of HEV-like structures that can aggregate into 3D organoids (HEVOs). Upon transplantation into immunodeficient mice, HEVOs successfully engraft and form lymphatic structures that recruit both antigen-presenting cells and adoptively-transferred lymphocytes, therefore displaying basic TLS capabilities. The results further show that functionally, HEVOs can organize an immune response and promote anti-tumor activity by adoptively-transferred T lymphocytes. Collectively, the experimental approaches represent an innovative and scalable proof-of-concept strategy for the fabrication of bioengineered TLS that can be deployed in vivo to enhance adaptive immune responses.


Assuntos
Estruturas Linfoides Terciárias , Camundongos , Humanos , Animais , Estruturas Linfoides Terciárias/patologia , Vênulas , Células Endoteliais , Linfonodos , Organoides , Fatores de Transcrição
2.
Nat Methods ; 13(10): 868-74, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27595405

RESUMO

CRISPR-Cas9 delivery by adeno-associated virus (AAV) holds promise for gene therapy but faces critical barriers on account of its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multifunctional platform customizable for genome editing, transcriptional regulation, and other previously impracticable applications of AAV-CRISPR-Cas9. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce extensive cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics.


Assuntos
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Animais , Ensaio de Imunoadsorção Enzimática , Edição de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Nat Cell Biol ; 13(11): 1344-52, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21983566

RESUMO

Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin-proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation.


Assuntos
Citosol/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Espectrometria de Massas , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA