Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Rev Genet ; 22(11): 730-746, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34234299

RESUMO

Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Biologia Sintética/métodos , Animais , Bactérias , Sistema Livre de Células , Humanos , Imunomodulação , Mamíferos , Microbiota , Neoplasias/terapia , Patologia Molecular/métodos , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/fisiologia
2.
J Am Chem Soc ; 142(27): 11818-11828, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511919

RESUMO

The alkylating warhead of the pancreatic cancer drug streptozotocin (SZN) contains an N-nitrosourea moiety constructed from Nω-methyl-l-arginine (l-NMA) by the multi-domain metalloenzyme SznF. The enzyme's central heme-oxygenase-like (HO-like) domain sequentially hydroxylates Nδ and Nω' of l-NMA. Its C-terminal cupin domain then rearranges the triply modified arginine to Nδ-hydroxy-Nω-methyl-Nω-nitroso-l-citrulline, the proposed donor of the functional pharmacophore. Here we show that the HO-like domain of SznF can bind Fe(II) and use it to capture O2, forming a peroxo-Fe2(III/III) intermediate. This intermediate has absorption- and Mössbauer-spectroscopic features similar to those of complexes previously trapped in ferritin-like diiron oxidases and oxygenases (FDOs) and, more recently, the HO-like fatty acid oxidase UndA. The SznF peroxo-Fe2(III/III) complex is an intermediate in both hydroxylation steps, as shown by the concentration-dependent acceleration of its decay upon exposure to either l-NMA or Nδ-hydroxy-Nω-methyl-l-Arg (l-HMA). The Fe2(III/III) cluster produced upon decay of the intermediate has a small Mössbauer quadrupole splitting parameter, implying that, unlike the corresponding product states of many FDOs, it lacks an oxo-bridge. The subsequent decomposition of the product cluster to one or more paramagnetic Fe(III) species over several hours explains why SznF was previously purified and crystallographically characterized without its cofactor. Programmed instability of the oxidized form of the cofactor appears to be a unifying characteristic of the emerging superfamily of HO-like diiron oxidases and oxygenases (HDOs).


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Metaloproteínas/metabolismo , Compostos de Nitrosoureia/metabolismo , Estreptozocina/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Compostos Férricos/química , Hidroxilação , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Compostos de Nitrosoureia/química , Streptomyces/enzimologia , Estreptozocina/química
3.
Chembiochem ; 21(8): 1155-1160, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31643127

RESUMO

N-Nitroso-containing natural products are bioactive metabolites with antibacterial and anticancer properties. In particular, compounds containing the diazeniumdiolate (N-nitrosohydroxylamine) group display a wide range of bioactivities ranging from cytotoxicity to metal chelation. Despite the importance of this structural motif, knowledge of its biosynthesis is limited. Herein we describe the discovery of a biosynthetic gene cluster in Streptomyces alanosinicus ATCC 15710 responsible for producing the diazeniumdiolate natural product l-alanosine. Gene disruption and stable isotope feeding experiments identified essential biosynthetic genes and revealed the source of the N-nitroso group. Additional biochemical characterization of the biosynthetic enzymes revealed that the non-proteinogenic amino acid l-2,3-diaminopropionic acid (l-Dap) is synthesized and loaded onto a free-standing peptidyl carrier protein (PCP) domain in l-alanosine biosynthesis, which we propose may be a mechanism of handling unstable intermediates generated en route to the diazeniumdiolate. These discoveries will facilitate efforts to determine the biochemistry of diazeniumdiolate formation.


Assuntos
Alanina/análogos & derivados , Compostos Azo/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Família Multigênica , Streptomyces/metabolismo , Alanina/metabolismo , Proteínas de Bactérias/genética , Estrutura Molecular , Streptomyces/genética
4.
Nature ; 566(7742): 94-99, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728519

RESUMO

Small molecules containing the N-nitroso group, such as the bacterial natural product streptozotocin, are prominent carcinogens1,2 and important cancer chemotherapeutics3,4. Despite the considerable importance of this functional group to human health, enzymes dedicated to the assembly of the N-nitroso unit have not been identified. Here we show that SznF, a metalloenzyme from the biosynthesis of streptozotocin, catalyses an oxidative rearrangement of the guanidine group of Nω-methyl-L-arginine to generate an N-nitrosourea product. Structural characterization and mutagenesis of SznF reveal two separate active sites that promote distinct steps in this transformation using different iron-containing metallocofactors. This biosynthetic reaction, which has little precedent in enzymology or organic synthesis, expands the catalytic capabilities of non-haem-iron-dependent enzymes to include N-N bond formation. We find that biosynthetic gene clusters that encode SznF homologues are widely distributed among bacteria-including environmental organisms, plant symbionts and human pathogens-which suggests an unexpectedly diverse and uncharacterized microbial reservoir of bioactive N-nitroso metabolites.


Assuntos
Metaloproteínas/metabolismo , Estreptozocina/biossíntese , Estreptozocina/química , Arginina/análogos & derivados , Domínio Catalítico/genética , Coenzimas/metabolismo , Cristalografia por Raios X , Guanidina/metabolismo , Ferro/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Modelos Moleculares , Família Multigênica , Compostos de Nitrosoureia/metabolismo , Streptomyces/enzimologia , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA