Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(4): 926-937, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477945

RESUMO

Invariant natural killer T (iNKT) cells play an important role in many innate and adaptive immune responses, with potential applications in cancer immunotherapy. The glycolipid KRN7000, an α-galactosylceramide, potently activates iNKT cells but has shown limited anticancer effects in human clinical trials conducted so far. In spite of almost three decades of structure-activity relationship studies, no alternative glycolipid has yet emerged as a superior clinical candidate. One reason for the slow progress in this area is that standard mouse models do not accurately reflect the specific ligand recognition by human iNKT cells and their requirements for activation. Here we evaluated a series of KRN7000 analogues using a recently developed humanized mouse model that expresses a human αTCR chain sequence and human CD1d. In this process, a more stimulatory, previously reported but largely overlooked glycolipid was identified, and its activity was probed and rationalized via molecular simulations.


Assuntos
Galactosilceramidas , Glicolipídeos , Células T Matadoras Naturais , Animais , Humanos , Camundongos , Antígenos CD1d , Glicolipídeos/agonistas
2.
mBio ; 13(3): e0297421, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467412

RESUMO

Autophagy is an ubiquitous homeostatic pathway in mammalian cells and plays a significant role in host immunity. Substantial evidence indicates that the ability of Mycobacterium tuberculosis (Mtb) to successfully evade immune responses is partially due to inhibition of autophagic pathways. Our previous screening of Mtb transposon mutants identified the PPE51 protein as an important autophagy-inhibiting effector. We found that expression of PPE51, either by infecting bacteria or by direct expression in host cells, suppressed responses to potent autophagy-inducing stimuli and interfered with bacterial phagocytosis. This phenotype was associated with reduced activation of extracellular signal-regulated kinase 1/2 (ERK1/2), a key component of signaling pathways that stimulate autophagy. Multiple lines of evidence demonstrated that the effects of PPE51 are attributable to signal blocking by Toll-like receptor 2 (TLR2), a receptor with known involvement of activation of ERK1/2 and autophagy. Consistent with these results, mice with intact TLR2 signaling showed striking virulence attenuation for an Mtb ppe51 deletion mutant (Δ51) compared to wild-type Mtb, whereas infection of TLR2-deficient mice showed no such attenuation. Mice infected with Δ51 also displayed increased T cell responses to Mtb antigens and increased autophagy in infected lung tissues. Together, these results suggest that TLR2 activates relevant host immune functions during mycobacterial infection, which Mtb then evades through suppression of TLR2 signaling by PPE51. In addition to its previously identified function transporting substrates across the bacterial cell wall, our results demonstrate a direct role of PPE51 for evasion of both innate and adaptive immunity to Mtb. IMPORTANCE Tuberculosis is a significant global infectious disease caused by infection of the lungs with Mycobacterium tuberculosis, which resides and replicates mainly within host phagocytic cells. During coevolution with humans, Mtb has acquired various mechanisms to inhibit host cellular processes, including autophagy. Autophagy is a complex host cellular process that helps control intracellular infections by enhancing innate and adaptive immune responses. We identified the Mtb protein PPE51 as a mycobacterial effector that inhibits autophagy. We discovered TLR2 and mitogen-activated protein kinase signaling as the axis by which PPE51 mediates this effect. Autophagy regulation by PPE51, along with suppression of other TLR2-activated host cell functions, leads to increased bacterial survival in phagocytic cells and tissues of infected mice. A better understanding of how Mtb regulates autophagy and other host immune effectors could facilitate the design of new therapeutics or vaccines against tuberculosis.


Assuntos
Autofagia , Proteínas de Bactérias , Mycobacterium tuberculosis , Receptor 2 Toll-Like , Tuberculose , Animais , Proteínas de Bactérias/imunologia , Imunidade Inata/genética , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/imunologia , Tuberculose/microbiologia
3.
mSphere ; 6(4): e0054921, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346699

RESUMO

Autophagy is a fundamental cellular process that has important roles in innate and adaptive immunity against a broad range of microbes. Many pathogenic microbes have evolved mechanisms to evade or exploit autophagy. It has been previously demonstrated that induction of autophagy can suppress the intracellular survival of mycobacteria, and several PE_PGRS family proteins of Mycobacterium tuberculosis have been proposed to act as inhibitors of autophagy to promote mycobacterial survival. However, the mechanisms by which these effectors inhibit autophagy have not been defined. Here, we report detailed studies of M. tuberculosis deletion mutants of two genes, pe_pgrs20 and pe_pgrs47, that we previously reported as having a role in preventing autophagy of infected host cells. These mutants resulted in increased autophagy and reduced intracellular survival of M. tuberculosis in macrophages. This phenotype was accompanied by increased cytokine production and antigen presentation by infected cells. We further demonstrated that autophagy inhibition by PE_PGRS20 and PE_PGRS47 resulted from canonical autophagy rather than autophagy flux inhibition. Using macrophages transfected to express PE_PGRS20 or PE_PGRS47, we showed that these proteins inhibited autophagy initiation directly by interacting with Ras-related protein Rab1A. Silencing of Rab1A in mammalian cells rescued the survival defects of the pe_pgrs20 and pe_pgrs47 deletion mutant strains and reduced cytokine secretion. To our knowledge, this is the first study to identify mycobacterial effectors that directly interact with host proteins responsible for autophagy initiation. IMPORTANCE Tuberculosis is a significant global infectious disease caused by infection of the lungs with Mycobacterium tuberculosis, which then resides and replicates mainly within host phagocytic cells. Autophagy is a complex host cellular process that helps control intracellular infections and enhance innate and adaptive immune responses. During coevolution with humans, M. tuberculosis has acquired various mechanisms to inhibit host cellular processes, including autophagy. We identified two related M. tuberculosis proteins, PE_PGRS20 and PE_PGRS47, as the first reported examples of specific mycobacterial effectors interfering with the initiation stage of autophagy. Autophagy regulation by these PE_PGRS proteins leads to increased bacterial survival in phagocytic cells and increased autophagic degradation of mycobacterial antigens to stimulate adaptive immune responses. A better understanding of how M. tuberculosis regulates autophagy in host cells could facilitate the design of new and more effective therapeutics or vaccines against tuberculosis.


Assuntos
Autofagia , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Apresentação de Antígeno , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/imunologia , Células RAW 264.7 , Proteínas rab1 de Ligação ao GTP/genética
4.
Infect Immun ; 88(12)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32989037

RESUMO

The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to progressive or latent infection. Autophagy is recognized as one component of host cell responses that has an essential role in innate and adaptive immunity to intracellular bacteria. Many microbes, including Mycobacterium tuberculosis, have evolved to evade or exploit autophagy, but the precise mechanisms and virulence factors are mostly unknown. Through a loss-of-function screening of an M. tuberculosis transposon mutant library, we identified 16 genes that contribute to autophagy inhibition, six of which encoded the PE/PPE protein family. Their expression in Mycobacterium smegmatis confirmed that these PE/PPE proteins inhibit autophagy and increase intracellular bacterial persistence or replication in infected cells. These effects were associated with increased mammalian target of rapamycin (mTOR) activity and also with decreased production of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß). We also confirmed that the targeted deletion of the pe/ppe genes in M. tuberculosis resulted in enhanced autophagy and improved intracellular survival rates compared to those of wild-type bacteria in the infected macrophages. Differential expression of these PE/PPE proteins was observed in response to various stress conditions, suggesting that they may confer advantages to M. tuberculosis by modulating its interactions with host cells under various conditions. Our findings demonstrated that multiple M. tuberculosis PE/PPE proteins are involved in inhibiting autophagy during infection of host phagocytes and may provide strategic targets in developing therapeutics or vaccines against tuberculosis.


Assuntos
Autofagia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Tuberculose/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Interações entre Hospedeiro e Microrganismos/genética , Imunidade Inata , Interleucina-1beta/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Células RAW 264.7 , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/genética , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Virulência/genética
5.
J Immunol ; 205(2): 425-437, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32513849

RESUMO

The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Mycobacterium bovis/imunologia , Proteínas do Envelope Viral/imunologia , Aciltransferases/genética , Animais , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Vacinas contra Ebola/genética , Feminino , Humanos , Imunoglobulina G/sangue , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas do Envelope Viral/genética
6.
Immunohorizons ; 3(5): 161-171, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31356170

RESUMO

During Ag priming, naive CD4+ T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4+ T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3-secreting CD4+ T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood. Most IL-3-producing T cells coexpressed GM-CSF and other cytokines that define multifunctionality. Generation of IL-3-secreting T cells in vitro was dependent on IL-1 family cytokines and was inhibited by cytokines that induce canonical Th1 or Th2 cells. Our results identify IL-3-secreting CD4+ T cells as a potential functional subset that arises during priming of naive T cells in specific tissue locations.


Assuntos
Interleucina-3/biossíntese , Mucosa/microbiologia , Pele/microbiologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/imunologia , Listeria monocytogenes/imunologia , Listeriose/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/imunologia , Mucosa/virologia , Mycobacterium bovis/imunologia , Pele/imunologia , Pele/virologia , Tuberculose/microbiologia
7.
J Immunol ; 199(7): 2596-2606, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821584

RESUMO

Analysis of Ag-specific CD4+ T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4+ T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4+ T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4+ T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154+ cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4+ CD154+ cells was distinct from that of CD154- cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4+ T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4+ T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/genética , Perfilação da Expressão Gênica/métodos , Ativação Linfocitária , Mycobacterium bovis/imunologia , Animais , Antígenos de Bactérias/imunologia , Ligante de CD40/análise , Ligante de CD40/deficiência , Citocinas/biossíntese , Citocinas/imunologia , Epitopos , Interleucina-3/biossíntese , Interleucina-3/imunologia , Camundongos , Vacinação
8.
Nat Microbiol ; 1(9): 16133, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27562263

RESUMO

Suppression of major histocompatibility complex (MHC) class II antigen presentation is believed to be among the major mechanisms used by Mycobacterium tuberculosis to escape protective host immune responses. Through a genome-wide screen for the genetic loci of M. tuberculosis that inhibit MHC class II-restricted antigen presentation by mycobacteria-infected dendritic cells, we identified the PE_PGRS47 protein as one of the responsible factors. Targeted disruption of the PE_PGRS47 (Rv2741) gene led to attenuated growth of M. tuberculosis in vitro and in vivo, and a PE_PGRS47 mutant showed enhanced MHC class II-restricted antigen presentation during in vivo infection of mice. Analysis of the effects of deletion or over-expression of PE_PGRS47 implicated this protein in the inhibition of autophagy in infected host phagocytes. Our findings identify PE_PGRS47 as a functionally relevant, non-redundant bacterial factor in the modulation of innate and adaptive immunity by M. tuberculosis, suggesting strategies for improving antigen presentation and the generation of protective immunity during vaccination or infection.


Assuntos
Apresentação de Antígeno , Autofagia , Proteínas de Bactérias/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Células Dendríticas/imunologia , Feminino , Deleção de Genes , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia
9.
Expert Rev Vaccines ; 14(11): 1493-507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366616

RESUMO

The development of more effective vaccines against Mycobacterium tuberculosis (Mtb) remains a major goal in the effort to reduce the enormous global burden of disease caused by this pathogen. Whole-cell vaccines based on live mycobacteria with attenuated virulence represent an appealing approach, providing broad antigen exposure and intrinsic adjuvant properties to prime durable immune responses. However, designing vaccine strains with an optimal balance between attenuation and immunogenicity has proven to be extremely challenging. Recent basic and clinical research efforts have broadened our understanding of Mtb pathogenesis and created numerous new vaccine candidates that have been designed to overcome different aspects of immune evasion by Mtb. In this review, we provide an overview of the current efforts to create improved vaccines against tuberculosis based on modifications of live attenuated mycobacteria. In addition, we discuss the use of such vaccine strains as vectors for stimulating protective immunity against other infectious diseases and cancers.


Assuntos
Descoberta de Drogas/métodos , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/isolamento & purificação , Descoberta de Drogas/tendências , Humanos , Tuberculose/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação
10.
Clin Vaccine Immunol ; 22(7): 726-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25924766

RESUMO

The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.


Assuntos
Antígenos Virais/biossíntese , Portadores de Fármacos , Produtos do Gene gag/biossíntese , Instabilidade Genômica , Proteína gp120 do Envelope de HIV/biossíntese , Mycobacterium bovis/genética , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Antígenos Virais/genética , Produtos do Gene gag/genética , Vetores Genéticos , Proteína gp120 do Envelope de HIV/genética , Camundongos Endogâmicos C57BL , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Linfócitos T/imunologia
11.
PLoS One ; 9(9): e108383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255287

RESUMO

Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.


Assuntos
Antígenos Virais/imunologia , Vacina BCG/imunologia , Glicolipídeos/imunologia , Mycobacterium bovis/imunologia , Células T Matadoras Naturais/imunologia , Animais , Vacina BCG/administração & dosagem , Vacina BCG/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Anergia Clonal/imunologia , Modelos Animais de Doenças , Feminino , Galactosilceramidas/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia
12.
PLoS Pathog ; 9(8): e1003556, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950720

RESUMO

The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using ß-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Brucella abortus/metabolismo , Brucelose/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucelose/patologia , Feminino , Células HeLa , Humanos , Fígado/microbiologia , Fígado/patologia , Macrófagos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico/fisiologia , Vacúolos/genética , Vacúolos/metabolismo , Vacúolos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA