Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood Adv ; 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815238

RESUMO

Epstein-Barr virus (EBV) is a potent carcinogen linked to hematologic and solid malignancies, causing significant global morbidity and mortality. Therapy using allogeneic EBV-specific lymphocytes shows promise in certain populations, but the impact of EBV genome variation on these strategies remains unexplored. To address this, we sequenced 217 EBV genomes, including hematologic malignancies from Guatemala, Peru, Malawi, and Taiwan, and analyzed them alongside 1,307 publicly available EBV genomes from cancer, non-malignant diseases, and healthy individuals across Africa, Asia, Europe, North America, and South America. These included the first NK/T-cell lymphoma (NKTCL) EBV genomes reported outside East Asia. Our findings indicate that previously proposed EBV genome variants specific to certain cancer types are more closely tied to geographic origin than cancer histology. This included variants previously reported to be specific to NKTCL but were prevalent in EBV genomes from other cancer types and healthy individuals in East Asia. After controlling for geographic region, we did identify multiple NKTCL-specific variants associated with a 7.8- to 21.9- fold increased risk. We also observed frequent variations in EBV genomes affecting peptide sequences previously reported to bind common MHC alleles. Finally, we found several non-synonymous variants spanning the coding sequences of current vaccine targets BALF4, BKRF2, BLLF1, BXLF2, BZLF1, and BZLF2. These results highlight the need to consider geographic variation in EBV genomes when devising strategies for exploiting adaptive immune responses against EBV-related cancers, ensuring greater global effectiveness and equity in prevention and treatment.

4.
Blood ; 137(25): 3473-3483, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33754642

RESUMO

Hairy cell leukemia (HCL) is a rare B-cell malignancy, and there is a need for novel treatments for patients who do not benefit from purine analogs. Ibrutinib, an oral agent targeting Bruton tyrosine kinase in the B-cell receptor signaling pathway, is highly effective in several malignancies. Its activity in HCL was unknown, so we conducted a multisite phase 2 study of oral ibrutinib in patients with either relapsed classic or variant hairy cell leukemia. The primary outcome measure was the overall response rate (ORR) at 32 weeks, and we also assessed response at 48 weeks and best response during treatment. Key secondary objectives were characterization of toxicity and determination of progression-free survival (PFS) and overall survival (OS). Thirty-seven patients were enrolled at 2 different doses (24 at 420 mg, 13 at 840 mg). The median duration of follow-up was 3.5 years (range, 0-5.9 years). The ORR at 32 weeks was 24%, which increased to 36% at 48 weeks. The best ORR was 54%. The estimated 36-month PFS was 73% and OS was 85%. The most frequent adverse events were diarrhea (59%), fatigue (54%), myalgia (54%), and nausea (51%). Hematologic adverse events were common: anemia (43%), thrombocytopenia (41%), and neutropenia (35%). Ibrutinib can be safely administered to patients with HCL with objective responses and results in prolonged disease control. Although the initial primary outcome objective of the study was not met, the observation of objective responses in heavily pretreated patients coupled with a favorable PFS suggests that ibrutinib may be beneficial in these patients. This trial was registered at www.clinicaltrials.gov as #NCT01841723.


Assuntos
Adenina/análogos & derivados , Leucemia de Células Pilosas/tratamento farmacológico , Leucemia de Células Pilosas/mortalidade , Piperidinas/administração & dosagem , Adenina/administração & dosagem , Adenina/efeitos adversos , Administração Oral , Adulto , Idoso , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/efeitos adversos , Taxa de Sobrevida
5.
Am J Hematol ; 95(12): 1457-1465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777116

RESUMO

Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have poor outcomes and hematopoietic cell transplantation (HCT) is the only curative treatment. New targeted therapies improved survival in select patients with specific mutations, however management of patients without these molecular alterations is an unmet need. We conducted a phase one study of lenalidomide in combination with cytarabine/idarubicin salvage chemotherapy in patients with R/R AML and high-risk myelodysplastic syndromes. A total of 33 patients were enrolled in the study (30 AML, 3 MDS), and treated at three dose levels with 3 + 3 design. Dose-limiting toxicity (DLT) was seen in eight patients, including four hematologic DLTs. The most commonly observed non-hematologic serious adverse events were febrile neutropenia, rash, sepsis and renal injury. Dose level -1, consisting of 25 mg/d lenalidomide D1-21, 1 g/m2 cytarabine D5-8, and 8 mg/m2 idarubicin D5-7 was determined to be the maximum tolerated dose. Note, 15/33 (45%) of patients were able to receive pre-planned 21 days of lenalidomide. Overall, 18 patients achieved complete remission (CR) (n = 14) or CR with incomplete count recovery (CRi) (n = 4) with total CR/CRi rate of 56%. The 1-year and 2-year overall survival (OS) were 24% and 10%, respectively. Among responders, 10/18 underwent allogeneic HCT and had a 1-year OS of 40%. There was no molecular pattern associated with response. These data demonstrate that the combination had clinical activity in R/R AML. This regimen should be further investigated for patients who relapsed after HCT, and as a bridge therapy to HCT. (ClinicalTrials.gov identifier: NCT01132586).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Idarubicina/administração & dosagem , Idarubicina/efeitos adversos , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/mortalidade , Taxa de Sobrevida
7.
Oncotarget ; 9(4): 4354-4365, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435107

RESUMO

We previously reported that microRNA (miR)-29b is down-regulated and has a tumor suppressor role in acute myeloid leukemia (AML). However, little is known about the mechanisms responsible for miR-29b expression downregulation in AML. In this work we screened for mutations that could affect miR-29b expression. Using Sanger sequencing, we identified a germline thymidine (T) base deletion within the miR-29b-1/miR-29a cluster precursor in 16% of AML patients. Remarkably we found a significant enrichment for the presence of the miR-29 polymorphism in core binding factor (CBF) newly diagnosed AML patients (n = 61/303; 20%) with respect to age, sex and race matched controls (n = 43/402:11%, P < 0.01). Mechanistically, this polymorphism affects the expression ratio of mature miR-29b and miR-29a by dampening the processing of miR-29a. RNA immunoprecipitation assays showed reduced DROSHA binding capacity to the polymorphism with respect to the controls. Finally, we showed that this polymorphism negatively impacts the ability of miR-29b-1/miR-29a cluster to target MCL-1 and CDK6, both known miR-29 targets.

9.
J Immunol ; 198(6): 2500-2512, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159900

RESUMO

Acute graft-versus-host disease (aGVHD) continues to be a frequent and devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT), posing as a significant barrier against the widespread use of HSCTs as a curative modality. Recent studies suggested serum/plasma microRNAs (miRs) may predict aGVHD onset. However, little is known about the functional role of circulating miRs in aGVHD. In this article, we show in two independent cohorts that miR-29a expression is significantly upregulated in the serum of allogeneic HSCT patients at aGVHD onset compared with non-aGVHD patients. Serum miR-29a is also elevated as early as 2 wk before time of diagnosis of aGVHD compared with time-matched control subjects. We demonstrate novel functional significance of serum miR-29a by showing that miR-29a binds and activates dendritic cells via TLR7 and TLR8, resulting in the activation of the NF-κB pathway and secretion of proinflammatory cytokines TNF-α and IL-6. Treatment with locked nucleic acid anti-miR-29a significantly improved survival in a mouse model of aGVHD while retaining graft-versus-leukemia effects, unveiling a novel therapeutic target in aGVHD treatment or prevention.


Assuntos
Células Dendríticas/fisiologia , Doença Enxerto-Hospedeiro/diagnóstico , Efeito Enxerto vs Leucemia/genética , Transplante de Células-Tronco Hematopoéticas , MicroRNAs/biossíntese , Doença Aguda , Estudos de Coortes , Doença Enxerto-Hospedeiro/genética , Humanos , Inflamação/genética , Interleucina-6/metabolismo , MicroRNAs/sangue , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Prognóstico , RNA Interferente Pequeno/genética , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Transplante Homólogo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
10.
Oncotarget ; 7(34): 54174-54182, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27527866

RESUMO

Long noncoding RNAs (lncRNAs) are non-proten-coding transcripts of more than 200 nucleotides generated by RNA polymerase II and their expressions are tightly regulated in cell type specific- and/or cellular differential stage specific- manner. MIAT, originally isolated as a candidate gene for myocardial infarction, encodes lncRNA (termed MIAT). Here, we determined the expression level of MIAT in established leukemia/lymphoma cell lines and found its upregulation in lymphoid but not in myeloid cell lineage with mature B cell phenotype. MIAT expression level was further determined in chronic lymphocytic leukemias (CLL), characterized by expansion of leukemic cells with mature B phenotype, to demonstrate relatively high occurrence of MIAT upregulation in aggressive form of CLL carrying either 17p-deletion, 11q-deletion, or Trisomy 12 over indolent form carrying 13p-deletion. Furthermore, we show that MIAT constitutes a regulatory loop with OCT4 in malignant mature B cell, as was previously reported in mouse pulripotent stem cell, and that both molecules are essential for cell survival.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , RNA Longo não Codificante/fisiologia , Apoptose , Linhagem Celular Tumoral , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Fator 3 de Transcrição de Octâmero/fisiologia , Regulação para Cima
11.
Oncotarget ; 7(21): 29927-36, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27166255

RESUMO

We recently reported that Fhit is in a molecular complex with annexin A4 (ANXA4); following to their binding, Fhit delocalizes ANXA4 from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. Here, we demonstrate that Fhit physically interacts with A4 through its N-terminus; molecular dynamics simulations were performed on a 3D Fhit model to rationalize its mechanism of action. This approach allowed for the identification of the QHLIKPS heptapeptide (position 7 to 13 of the wild-type Fhit protein) as the smallest Fhit sequence still able to preserve its ability to bind ANXA4. Interestingly, Fhit peptide also recapitulates the property of the native protein in inhibiting Annexin A4 translocation from cytosol to plasma membrane in A549 and Calu-2 lung cancer cells treated with paclitaxel. Finally, the combination of Tat-Fhit peptide and paclitaxel synergistically increases the apoptotic rate of cultured lung cancer cells and blocks in vivo tumor formation.Our findings address to the identification of chemically simplified Fhit derivatives that mimic Fhit tumor suppressor functions; intriguingly, this approach might lead to the generation of novel anticancer drugs to be used in combination with conventional therapies in Fhit-negative tumors to prevent or delay chemoresistance.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Anexina A4/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , Fragmentos de Peptídeos/farmacologia , Células A549 , Hidrolases Anidrido Ácido/genética , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Membrana Celular/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Paclitaxel/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Ligação Proteica , Transporte Proteico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 8(11): e78610, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223161

RESUMO

Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4) was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex. Here we report that overexpression of Fhit prevents Annexin A4 translocation from cytosol to plasma membrane in A549 lung cancer cells treated with paclitaxel. Moreover, paclitaxel administration in combination with AdFHIT acts synergistically to increase the apoptotic rate of tumor cells both in vitro and in vivo experiments.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Anexina A4/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Anexina A4/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Expressão Gênica , Humanos , Imunoprecipitação , Injeções Intravenosas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Microscopia Confocal , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Transporte Proteico
13.
PLoS Genet ; 9(3): e1003311, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505378

RESUMO

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ß-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Assuntos
Neoplasias da Mama , Proteína 1 de Resposta de Crescimento Precoce , Receptor alfa de Estrogênio , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Blood ; 121(2): 351-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23160471

RESUMO

T-cell leukemia/lymphoma 1 (TCL1) is an oncogene overexpressed in T-cell prolymphocytic leukemia and in B-cell malignancies including B-cell chronic lymphocytic leukemia and lymphomas. To date, only a limited number of Tcl1-interacting proteins that regulate its oncogenic function have been identified. Prior studies used a proteomic approach to identify a novel interaction between Tcl1 with Ataxia Telangiectasia Mutated. The association of Tcl1 and Ataxia Telangiectasia Mutated leads to activation of the NF-κB pathway. Here, we demonstrate that Tcl1 also interacts with heat shock protein (Hsp) 70. The Tcl1-Hsp70 complex was validated by coimmunoprecipitation experiments. In addition, we report that Hsp70, a protein that plays a critical role in the folding and maturation of several oncogenic proteins, associates with Tcl1 protein and stabilizes its expression. The inhibition of the ATPase activity of Hsp70 results in ubiquitination and proteasome-dependent degradation of Tcl1. The inhibition of Hsp70 significantly reduced the growth of lymphoma xenografts in vivo and down-regulated the expression of Tcl1 protein. Our findings reveal a functional interaction between Tcl1 and Hsp70 and identify Tcl1 as a novel Hsp70 client protein. These findings suggest that inhibition of Hsp70 may represent an alternative effective therapy for chronic lymphocytic leukemia and lymphomas via its ability to inhibit the oncogenic functions of Tcl1.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Immunoblotting , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Leucemia/genética , Linfoma/genética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas/genética , Transfecção , Transplante Heterólogo
15.
Nat Med ; 18(1): 74-82, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22157681

RESUMO

The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression, and their dysregulation has been implicated in tumorigenesis. To understand their role in TKI-resistant NSCLCs, we examined changes in miRNA that are mediated by tyrosine kinase receptors. Here we report that miR-30b, miR-30c, miR-221 and miR-222 are modulated by both epidermal growth factor (EGF) and MET receptors, whereas miR-103 and miR-203 are controlled only by MET. We showed that these miRNAs have important roles in gefitinib-induced apoptosis and epithelial-mesenchymal transition of NSCLC cells in vitro and in vivo by inhibiting the expression of the genes encoding BCL2-like 11 (BIM), apoptotic peptidase activating factor 1 (APAF-1), protein kinase C ɛ (PKC-ɛ) and sarcoma viral oncogene homolog (SRC). These findings suggest that modulation of specific miRNAs may provide a therapeutic approach for the treatment of NSCLCs.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Transdução de Sinais
16.
J Natl Cancer Inst ; 102(10): 706-21, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20388878

RESUMO

BACKGROUND: Several lines of evidence have suggested that estrogen receptor alpha (ERalpha)-negative breast tumors, which are highly aggressive and nonresponsive to hormonal therapy, arise from ERalpha-positive precursors through different molecular pathways. Because microRNAs (miRNAs) modulate gene expression, we hypothesized that they may have a role in ER-negative tumor formation. METHODS: Gene expression profiles were used to highlight the global changes induced by miRNA modulation of ERalpha protein. miRNA transfection and luciferase assays enabled us to identify new targets of miRNA 206 (miR-206) and miRNA cluster 221-222 (miR-221-222). Northern blot, luciferase assays, estradiol treatment, and chromatin immunoprecipitation were performed to identify the miR-221-222 transcription unit and the mechanism implicated in its regulation. RESULTS: Different global changes in gene expression were induced by overexpression of miR-221-222 and miR-206 in ER-positive cells. miR-221 and -222 increased proliferation of ERalpha-positive cells, whereas miR-206 had an inhibitory effect (mean absorbance units [AU]: miR-206: 500 AU, 95% confidence interval [CI]) = 480 to 520; miR-221: 850 AU, 95% CI = 810 to 873; miR-222: 879 AU, 95% CI = 850 to 893; P < .05). We identified hepatocyte growth factor receptor and forkhead box O3 as new targets of miR-206 and miR-221-222, respectively. We demonstrated that ERalpha negatively modulates miR-221 and -222 through the recruitment of transcriptional corepressor partners: nuclear receptor corepressor and silencing mediator of retinoic acid and thyroid hormone receptor. CONCLUSIONS: These findings suggest that the negative regulatory loop involving miR-221-222 and ERalpha may confer proliferative advantage and migratory activity to breast cancer cells and promote the transition from ER-positive to ER-negative tumors.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , MicroRNAs/metabolismo , Transcrição Gênica , Northern Blotting , Western Blotting , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Genes erbB-2 , Humanos , Análise em Microsséries , Plasmídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Ativação Transcricional , Regulação para Cima
17.
Cancer Cell ; 16(6): 498-509, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19962668

RESUMO

Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs frequently deregulated in human malignancies. We now report that miR-221&222 are overexpressed in aggressive non-small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation through the c-Jun transcription factor.


Assuntos
Regulação para Baixo/fisiologia , MicroRNAs/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Inibidor Tecidual de Metaloproteinase-3/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Hepáticas/patologia
18.
Traffic ; 7(10): 1322-32, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16911590

RESUMO

The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.


Assuntos
Motivos de Aminoácidos , Citomegalovirus/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , Sinais de Localização Nuclear , Subunidades Proteicas/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Ligação Proteica , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA