Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer Res ; 84(2): 241-257, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37963210

RESUMO

Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE: CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Sarcoma de Ewing , Humanos , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/genética , DNA , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
2.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102136

RESUMO

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Assuntos
RNA Polimerase II , Rabdomiossarcoma Alveolar , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Cisteína/metabolismo , Fatores de Transcrição/metabolismo , Fator de Transcrição PAX3/genética , Rabdomiossarcoma Alveolar/genética , RNA/metabolismo , Ativação Transcricional , Ligação Proteica , Proteína Forkhead Box O1/metabolismo
7.
Sci Rep ; 12(1): 10671, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739280

RESUMO

As the second most common pediatric bone and soft tissue tumor, Ewing sarcoma (ES) is an aggressive disease with a pathognomonic chromosomal translocation t(11;22) resulting in expression of EWS-FLI1, an "undruggable" fusion protein acting as transcriptional modulator. EWS-FLI1 rewires the protein expression in cancer cells by activating and repressing a multitude of genes. The role and contribution of most repressed genes remains unknown to date. To address this, we established a CRISPR activation system in clonal SKNMC cell lines and interrogated a custom focused library covering 871 genes repressed by EWS-FLI1. Among the hits several members of the TGFß pathway were identified, where PEG10 emerged as prime candidate due to its strong antiproliferative effect. Mechanistic investigations revealed that PEG10 overexpression caused cellular dropout via induction of cell death. Furthermore, non-canonical TGFß pathways such as RAF/MEK/ERK, MKK/JNK, MKK/P38, known to lead to apoptosis or autophagy, were highly activated upon PEG10 overexpression. Our study sheds new light onto the contribution of TGFß signalling pathway repression to ES tumorigenesis and suggest that its re-activation might constitute a novel therapeutic strategy.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Ligação a DNA , Tumores Neuroectodérmicos Primitivos Periféricos , Proteínas de Ligação a RNA , Sarcoma de Ewing , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Criança , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sarcoma de Ewing/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
8.
Neoplasia ; 27: 100784, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366465

RESUMO

Oncogenic transcription factors lacking enzymatic activity or targetable binding pockets are typically considered "undruggable". An example is provided by the EWS-FLI1 oncoprotein, whose continuous expression and activity as transcription factor are critically required for Ewing sarcoma tumor formation, maintenance, and proliferation. Because neither upstream nor downstream targets have so far disabled its oncogenic potential, we performed a high-throughput drug screen (HTS), enriched for FDA-approved drugs, coupled to a Global Protein Stability (GPS) approach to identify novel compounds capable to destabilize EWS-FLI1 protein by enhancing its degradation through the ubiquitin-proteasome system. The protein stability screen revealed the dual histone deacetylase (HDAC) and phosphatidylinositol-3-kinase (PI3K) inhibitor called fimepinostat (CUDC-907) as top candidate to modulate EWS-FLI1 stability. Fimepinostat strongly reduced EWS-FLI1 protein abundance, reduced viability of several Ewing sarcoma cell lines and PDX-derived primary cells and delayed tumor growth in a xenograft mouse model, whereas it did not significantly affect healthy cells. Mechanistically, we demonstrated that EWS-FLI1 protein levels were mainly regulated by fimepinostat's HDAC activity. Our study demonstrates that HTS combined to GPS is a reliable approach to identify drug candidates able to modulate stability of EWS-FLI1 and lays new ground for the development of novel therapeutic strategies aimed to reduce Ewing sarcoma tumor progression.


Assuntos
Sarcoma de Ewing , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/patologia
9.
Nat Commun ; 11(1): 4629, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934208

RESUMO

Cancer therapy is currently shifting from broadly used cytotoxic drugs to patient-specific precision therapies. Druggable driver oncogenes, identified by molecular analyses, are present in only a subset of patients. Functional profiling of primary tumor cells could circumvent these limitations, but suitable platforms are unavailable for most cancer entities. Here, we describe an in vitro drug profiling platform for rhabdomyosarcoma (RMS), using a living biobank composed of twenty RMS patient-derived xenografts (PDX) for high-throughput drug testing. Optimized in vitro conditions preserve phenotypic and molecular characteristics of primary PDX cells and are compatible with propagation of cells directly isolated from patient tumors. Besides a heterogeneous spectrum of responses of largely patient-specific vulnerabilities, profiling with a large drug library reveals a strong sensitivity towards AKT inhibitors in a subgroup of RMS. Overall, our study highlights the feasibility of in vitro drug profiling of primary RMS for patient-specific treatment selection in a co-clinical setting.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Rabdomiossarcoma/metabolismo , Animais , Bancos de Espécimes Biológicos , Perfilação da Expressão Gênica , Humanos , Fenótipo , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Células Tumorais Cultivadas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744500

RESUMO

The NuRD complex subunit CHD4 is essential for fusion-positive rhabdomyosarcoma (FP-RMS) survival, but the mechanisms underlying this dependency are not understood. Here, a NuRD-specific CRISPR screen demonstrates that FP-RMS is particularly sensitive to CHD4 amongst the NuRD members. Mechanistically, NuRD complex containing CHD4 localizes to super-enhancers where CHD4 generates a chromatin architecture permissive for the binding of the tumor driver and fusion protein PAX3-FOXO1, allowing downstream transcription of its oncogenic program. Moreover, CHD4 depletion removes HDAC2 from the chromatin, leading to an increase and spread of histone acetylation, and prevents the positioning of RNA Polymerase 2 at promoters impeding transcription initiation. Strikingly, analysis of genome-wide cancer dependency databases identifies CHD4 as a general cancer vulnerability. Our findings describe CHD4, a classically defined repressor, as positive regulator of transcription and super-enhancer accessibility as well as establish this remodeler as an unexpected broad tumor susceptibility and promising drug target for cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
11.
Cancer Cell ; 36(6): 630-644.e9, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31735627

RESUMO

The chimeric transcription factor TCF3-HLF defines an incurable acute lymphoblastic leukemia subtype. Here we decipher the regulome of endogenous TCF3-HLF and dissect its essential transcriptional components and targets by functional genomics. We demonstrate that TCF3-HLF recruits HLF binding sites at hematopoietic stem cell/myeloid lineage associated (super-) enhancers to drive lineage identity and self-renewal. Among direct targets, hijacking an HLF binding site in a MYC enhancer cluster by TCF3-HLF activates a conserved MYC-driven transformation program crucial for leukemia propagation in vivo. TCF3-HLF pioneers the cooperation with ERG and recruits histone acetyltransferase p300 (EP300), conferring susceptibility to EP300 inhibition. Our study provides a framework for targeting driving transcriptional dependencies in this fatal leukemia.


Assuntos
Proteína p300 Associada a E1A/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/genética , Humanos , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA