Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(11)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999504

RESUMO

Conotoxins are toxic, disulfide-bond-rich peptides from cone snail venom that target a wide range of receptors and ion channels with multiple pathophysiological effects. Conotoxins have extraordinary potential for medical therapeutics that include cancer, microbial infections, epilepsy, autoimmune diseases, neurological conditions, and cardiovascular disorders. Despite the potential for these compounds in novel therapeutic treatment development, the process of identifying and characterizing the toxicities of conotoxins is difficult, costly, and time-consuming. This challenge requires a series of diverse, complex, and labor-intensive biological, toxicological, and analytical techniques for effective characterization. While recent attempts, using machine learning based solely on primary amino acid sequences to predict biological toxins (e.g., conotoxins and animal venoms), have improved toxin identification, these methods are limited due to peptide conformational flexibility and the high frequency of cysteines present in toxin sequences. This results in an enumerable set of disulfide-bridged foldamers with different conformations of the same primary amino acid sequence that affect function and toxicity levels. Consequently, a given peptide may be toxic when its cysteine residues form a particular disulfide-bond pattern, while alternative bonding patterns (isoforms) or its reduced form (free cysteines with no disulfide bridges) may have little or no toxicological effects. Similarly, the same disulfide-bond pattern may be possible for other peptide sequences and result in different conformations that all exhibit varying toxicities to the same receptor or to different receptors. We present here new features, when combined with primary sequence features to train machine learning algorithms to predict conotoxins, that significantly increase prediction accuracy.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/química , Caramujo Conus/química , Sequência de Aminoácidos , Peptídeos/química , Cisteína/metabolismo , Dissulfetos
2.
Nucleic Acids Res ; 39(18): e125, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21771856

RESUMO

Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained.


Assuntos
Biblioteca Gênica , Estrutura Terciária de Proteína , Classe Ia de Fosfatidilinositol 3-Quinase/química , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Cristalografia por Raios X , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Mycobacterium tuberculosis/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/genética , Reação em Cadeia da Polimerase , Solubilidade , Tetra-Hidrofolato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA