RESUMO
Understanding the genetic basis of seed Ni and Mo is essential. Since soybean is a major crop in the world and a major source for nutrients, including Ni and Mo, the objective of the current research was to map genetic regions (quantitative trait loci, QTL) linked to Ni and Mo concentrations in soybean seed. A recombinant inbred line (RIL) population was derived from a cross between 'Forrest' and 'Williams 82' (F × W82). A total of 306 lines was used for genotyping using 5405 single nucleotides polymorphism (SNP) markers using Infinium SNP6K BeadChips. A two-year experiment was conducted and included the parents and the RIL population. One experiment was conducted in 2018 in North Carolina (NC), and the second experiment was conducted in Illinois in 2020 (IL). Logarithm of the odds (LOD) of ≥2.5 was set as a threshold to report identified QTL using the composite interval mapping (CIM) method. A wide range of Ni and Mo concentrations among RILs was observed. A total of four QTL (qNi-01, qNi-02, and qNi-03 on Chr 2, 8, and 9, respectively, in 2018, and qNi-01 on Chr 20 in 2020) was identified for seed Ni. All these QTL were significantly (LOD threshold > 2.5) associated with seed Ni, with LOD scores ranging between 2.71-3.44, and with phenotypic variance ranging from 4.48-6.97%. A total of three QTL for Mo (qMo-01, qMo-02, and qMo-03 on Chr 1, 3, 17, respectively) was identified in 2018, and four QTL (qMo-01, qMo-02, qMo-03, and qMo-04, on Chr 5, 11, 14, and 16, respectively) were identified in 2020. Some of the current QTL had high LOD and significantly contributed to the phenotypic variance for the trait. For example, in 2018, Mo QTL qMo-01 on Chr 1 had LOD of 7.8, explaining a phenotypic variance of 41.17%, and qMo-03 on Chr 17 had LOD of 5.33, with phenotypic variance explained of 41.49%. In addition, one Mo QTL (qMo-03 on Chr 14) had LOD of 9.77, explaining 51.57% of phenotypic variance related to the trait, and another Mo QTL (qMo-04 on Chr 16) had LOD of 7.62 and explained 49.95% of phenotypic variance. None of the QTL identified here were identified twice across locations/years. Based on a search of the available literature and of SoyBase, the four QTL for Ni, identified on Chr 2, 8, 9, and 20, and the five QTL associated with Mo, identified on Chr 1, 17, 11, 14, and 16, are novel and not previously reported. This research contributes new insights into the genetic mapping of Ni and Mo, and provides valuable QTL and molecular markers that can potentially assist in selecting Ni and Mo levels in soybean seeds.
RESUMO
Breeding for increased protein without a reduction in oil content in soybeans [Glycine max (L.) Merr.] is a challenge for soybean breeders but an expected goal. Many efforts have been made to develop new soybean varieties with high yield in combination with desirable protein and/or oil traits. An elite line, R05-1415, was reported to be high yielding, high protein, and low oil. Several significant quantitative trait loci (QTL) for protein and oil were reported in this line, but many of them were unstable across environments or genetic backgrounds. Thus, a new study under multiple field environments using the Infinium BARCSoySNP6K BeadChips was conducted to detect and confirm stable genomic loci for these traits. Genetic analyses consistently detected a single major genomic locus conveying these two traits with remarkably high phenotypic variation explained (R2 ), varying between 24.2% and 43.5%. This new genomic locus is located between 25.0 and 26.7 Mb, distant from the previously reported QTL and did not overlap with other commonly reported QTL and the recently cloned gene Glyma.20G085100. Homolog analysis indicated that this QTL did not result from the paracentric chromosome inversion with an adjacent genomic fragment that harbors the reported QTL. The pleiotropic effect of this QTL could be a challenge for improving protein and oil simultaneously; however, a further study of four candidate genes with significant expressions in the seed developmental stages coupled with haplotype analysis may be able to pinpoint causative genes. The functionality and roles of these genes can be determined and characterized, which lay a solid foundation for the improvement of protein and oil content in soybeans.
Assuntos
Glycine max , Melhoramento Vegetal , Mapeamento Cromossômico , Genômica , Glycine max/genética , Sementes/genética , Sementes/metabolismo , Óleos de PlantasRESUMO
The continuous evolution and spread of virulent forms of the soybean cyst nematode (SCN) driven by the environment and anthropogenic intervention is a serious threat to the soybean production worldwide, including China. Especially in China, the implemented measures to control SCN are insufficient for sustainable agricultural development yet. We summarized our knowledge about the spread and spatial distribution of SCN in China and the virulence diversity in the main soybean growing areas. To reveal the genetic relatedness and diversity of SCN populations, we re-sequenced 53 SCN genomes from the Huang-Huai Valleys, one of the two main soybean growing areas in China. We identified spreading patterns linked to the local agroecosystems and topographies. Moreover, we disclosed the first evidence for the selection of complex virulence in the field even under low selection pressure in an example from North Shanxi. SCN is present in all soybean growing areas in China but SCN susceptible cultivars are still largely grown indicating that SCN-related damage and financial loss have not received the attention they deserve yet. To prevent increasing yield losses and to improve the acceptance of resistant cultivars by the growers, we emphasized that it is time to accelerate SCN resistance breeding, planting resistant cultivars to a larger extent, and to support farmers to implement a wider crop rotation for sustainable development of the soybean production in China.
RESUMO
KEY MESSAGE: This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Assuntos
Resistência à Doença , Glycine max , Glycine max/genética , Resistência à Doença/genética , Variações do Número de Cópias de DNA , GenômicaRESUMO
Plant parasitic nematodes are a major yield-limiting factor of soybean in the United States and Canada. It has been indicated that soybean cyst nematode (SCN; Heterodera glycines Ichinohe) and reniform nematode (RN; Rotylenchulus reniformis Linford and Oliveira) resistance could be genetically related. For many years, fragmentary data have shown this relationship. This report evaluates RN reproduction on 418 plant introductions (PIs) selected from the U.S. Department of Agriculture Soybean Germplasm Collection with reported SCN resistance. The germplasm was divided into two tests of 214 PIs reported as resistant and 204 PIs reported as moderately resistant to SCN. The defining and reporting of RN resistance changed several times in the last 30 years, causing inconsistencies in RN resistance classification among multiple experiments. Comparison of four RN resistance classification methods was performed: (i) ≤10% as compared with the susceptible check, (ii) using normalized reproduction index (RI) values, and using (iii) transformed data log10(x), and (iv) transformed data log10(x + 1) in an optimal univariate k-means clustering analysis. The method of transformed data log10(x) was selected as the most accurate for classification of RN resistance. Among 418 PIs with reported SCN resistance, the log10(x) method grouped 59 PIs (15%) as resistant and 130 PIs (31%) as moderately resistant to RN. Genotyping of a subset of the most resistant PIs to both nematode species revealed their strong correlation with rhg1-a allele. This research identified genotypes with resistance to two nematode species and potential new sources of RN resistance that could be valuable to breeders in developing resistant cultivars.
Assuntos
Cistos , Tylenchoidea , Animais , Genótipo , Doenças das Plantas/parasitologia , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/genéticaRESUMO
We recently reported that adoptive transfer of cytolytic Natural Killer cells (cNKs) from the Reduced Uterine Perfusion Pressure (RUPP) rat induces a preeclampsia (PE)-like phenotype in pregnant rats, accompanied by increased TNF-α. The purpose of this study was to investigate a role for increased TNF-α to induce oxidative stress (ROS), decrease nitric oxide (NO) bioavailability, and induce vascular dysfunction as mechanisms of hypertension (HTN) and intrauterine growth restriction (IUGR) in RUPPs. Pregnant Sprague Dawley rats underwent the RUPP or a Sham procedure on gestation day (GD) 14. On GDs 15 and 18, a subset of Sham and RUPP rats received i.p.injections of vehicle or 0.4 mg/kg of Etanercept (ETA), a soluble TNF-α receptor (n = 10/group). On GD18, Uterine Artery Resistance Index (UARI) was measured, and on GD19, mean arterial pressure (MAP), fetal and placental weights were measured, and blood and tissues were processed for analysis. TNF-α blockade normalized the elevated MAP observed RUPP. Additionally, both fetal and placental weights were decreased in RUPP compared to Sham, and were normalized in RUPP + ETA. Placental ROS was also increased in RUPP rats compared to Sham, and remained elevated in RUPP + ETA. Compared to Sham, UARI was elevated in RUPPs while plasma total nitrate was reduced, and these were normalized in ETA treated RUPPs. In conclusion, TNF-α blockade in RUPPs reduced MAP and UARI, improved fetal growth, and increased NO bioavailability. These data suggest that TNF-α regulation of NO bioavailability is a potential mechanism that contributes to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes and fetal growth.
Assuntos
Placenta/metabolismo , Fator de Necrose Tumoral alfa/sangue , Artéria Uterina/fisiopatologia , Útero/irrigação sanguínea , Animais , Pressão Arterial , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/prevenção & controle , Humanos , Estresse Oxidativo , Gravidez , Ratos , Ratos Sprague-DawleyRESUMO
There is a decrease in the land available for rice cultivation due to the rapid conversion to urban uses. Subsequently, acid soil could be an alternative land cultivating rice, but will require the use of aluminum (Al)-tolerant rice varieties. This Al tolerance trait is genetically controlled, and there is a need to discover more genes needed to develop Al-tolerant rice. Therefore, the objective of this study was to clone and characterize a novel Al tolerance gene isolated from a local cultivar of Indonesian rice. The gene cloning was conducted based on the rye/rice microsynteny relationship. In addition, the root growth and gene expression analyses were performed to verify the role of the gene on Al tolerance in gene-silenced rice and in overexpressed transgenic tobacco. The results showed an Al tolerance candidate gene, OsGERLP, was successfully cloned from rice cv. Hawara Bunar, with its gene encoding a protein similar to a bacterial ribosomal L32 protein. Additionally, the analysis showed that low gene expression caused the gene-silenced rice to be sensitive to Al, while high expression induced the Al tolerance in transgenic tobacco. Furthermore, it was discovered that the gene expression level in both plants was in line with the lower expression of the OsFRDL4 gene in the silenced rice and the high expression of the MATE gene in transgenic tobacco also with the higher citrate secretion from transgenic tobacco roots. In conclusion, the OsGERLP gene could act as a regulator for other Al tolerance genes, with the potential to develop Al-tolerant rice varieties.
Assuntos
Oryza , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas , Indonésia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismoRESUMO
Reniform nematode (RN, Rotylenchulus reniformis Linford & Oliveira) has emerged as one of the most important plant parasitic nematodes of soybean [Glycine max (L.) Merr.]. Planting resistant varieties is the most effective strategy for nematode management. The objective of this study was to identify quantitative trait loci (QTL) for RN resistance in an exotic soybean line, PI 438489B, using two linkage maps constructed from the Universal Soybean Linkage Panel (USLP 1.0) and next-generation whole-genome resequencing (WGRS) technology. Two QTL controlling RN resistance were identified-the soybean cyst nematode (SCN, Heterodera glycines) resistance gene GmSNAP18 at the rhg1 locus and its paralog GmSNAP11. Strong association between resistant phenotype and haplotypes of the GmSNAP11 and GmSNAP18 was observed. The results indicated that GmSNAP11 possibly could have epistatic effect on GmSNAP18, or vice versa, with the presence of a significant correlation in RN resistance of rhg1-a GmSNAP18 vs. rhg1-b GmSNAP18. Most importantly, our preliminary data suggested that GmSNAP18 and GmSNAP11 proteins physically interact in planta, suggesting that they belong to the same pathway for resistance. Unlike GmSNAP18, no indication of GmSNAP11 copy number variation was found. Moreover, gene-based single nucleotide polymorphism (SNP) markers were developed for rapid detection of RN or SCN resistance at these loci. Our analysis substantiates synergic interaction between GmSNAP11 and GmSNAP18 genes and confirms their roles in RN as well as SCN resistance. These results could contribute to a better understanding of evolution and subfunctionalization of genes conferring resistance to multiple nematode species and provide a framework for further investigations.
Assuntos
Cistos , Tylenchoidea , Animais , Variações do Número de Cópias de DNA , Resistência à Doença/genética , Doenças das Plantas/genética , Glycine max/genéticaRESUMO
KEY MESSAGE: The qSCN10 locus with broad-spectrum SCN resistance was fine-mapped to a 379-kb region on chromosome 10 in soybean accession PI 567516C. Candidate genes and potential application benefits of this locus were discussed. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pests of soybean, causing significant yield losses worldwide every year. Genetic resistance has been the major strategy to control this pest. However, the overuse of the same genetic resistance derived primarily from PI 88788 has led to the genetic shifts in nematode populations and resulted in the reduced effectiveness in soybean resistance to SCN. Therefore, novel genetic resistance resources, especially those with broad-spectrum resistance, are needed to develop new resistant cultivars to cope with the genetic shifts in nematode populations. In this study, a quantitative trait locus (QTL) qSCN10 previously identified from a soybean landrace PI 567516C was confirmed to confer resistance to multiple SCN HG Types. This QTL was further fine-mapped to a 379-kb region. There are 51 genes in this region. Four of them are defense-related and were regulated by SCN infection, suggesting their potential role in mediating resistance to SCN. The phylogenetic and haplotype analyses of qSCN10 as well as other information indicate that this locus is different from other reported resistance QTL or genes. There was no yield drag or other unfavorable traits associated with this QTL when near-isogenic lines with and without qSCN10 were tested in a SCN-free field. Therefore, our study not only provides further insight into the genetic basis of soybean resistance to SCN, but also identifies a novel genetic resistance resource for breeding soybean for durable, broad-spectrum resistance to this pest.
Assuntos
Resistência à Doença/genética , Marcadores Genéticos , Glycine max/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Tylenchoidea/fisiologia , Animais , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Filogenia , Doenças das Plantas/parasitologia , Glycine max/imunologia , Glycine max/parasitologiaRESUMO
KEY MESSAGE: The qSCN18 QTL from PI 56756C was confirmed and fine-mapped to improve soybean resistance to the SCN population HG Type 2.5.7 using near-isogenic lines carrying recombination crossovers within the QTL region. The QTL underlying resistance was fine-mapped to a 166-Kbp region on chromosome 18, and the candidate genes were selected based on genomic analyses. Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) is the most devastating pathogen of soybean. Understanding the genetic basis of SCN resistance is crucial for managing this parasite in the field. Two major loci, rhg1 and Rhg4, were previously characterized as valuable resources for SCN resistance. However, their continuous use has caused shifts in the virulence of SCN populations, which can overcome the resistance conferred by these two major loci. Reduced effectiveness became a major concern in the soybean industry due to continuous use of rhg1 for decades. Thus, it is imperative to identify sources of SCN resistance for durable SCN management. A novel QTL qSCN18 was identified in PI567516C. To fine-map qSCN18 and identify resistance genes, a large backcross population was developed. Nineteen near-isogenic lines (NILs) carrying recombination crossovers within the QTL region were identified. The first phase of fine-mapping narrowed the QTL region to 549-Kbp, whereas the second phase confined the region to 166-Kbp containing 23 genes. Two flanking markers, MK-1 and MK-6, were developed and validated to detect the presence of the qSCN18 resistance allele. Haplotype analysis clustered the fine-mapped qSCN18 region from PI 567516C with the cqSCN-007 locus previously mapped in the wild soybean accession PI 468916. The NILs were developed to further characterize the causal gene(s) harbored in this QTL. This study also confirmed the previously identified qSCN18. The results will facilitate marker-assisted selection (MAS) introducing the qSCN18 locus from PI 567516C into high-yielding soybean cultivars with durable resistance to SCN.
Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Tylenchoidea/fisiologia , Animais , Mapeamento Cromossômico , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Polimorfismo Genético , Glycine max/parasitologiaRESUMO
Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.
Assuntos
Genoma de Planta/genética , Glycine max/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Domesticação , Genômica/métodos , Genótipo , Anotação de Sequência Molecular , Peptídeos/genética , Proteínas de Plantas/genética , Translocação Genética/genéticaRESUMO
In soybeans, eighteen members constitute the serine hydroxymethyltransferase (GmSHMT) gene family, of which the cytosolic-targeted GmSHMT08c member has been reported to mediate resistance to soybean cyst nematode (SCN). This work presents a comprehensive study of the SHMT gene family members, including synteny, phylogeny, subcellular localizations, haplotypes, protein homology modeling, mutational, and expression analyses. Phylogenetic analysis showed that SHMT genes are divided into four classes reflecting their subcellular distribution (cytosol, nucleus, mitochondrion, and chloroplast). Subcellular localization of selected GmSHMT members supports their in-silico predictions and phylogenetic distribution. Expression and functional analyses showed that GmSHMT genes display many overlapping, but some divergent responses during SCN infection. Furthermore, mutational analysis reveals that all isolated EMS mutants that lose their resistance to SCN carry missense and nonsense mutations at the GmSHMT08c, but none of the Gmshmt08c mutants carried mutations in the other GmSHMT genes. Haplotype clustering analysis using the whole genome resequencing data from a collection of 106 diverse soybean germplams (15X) was performed to identify allelic variants and haplotypes within the GmSHMT gene family. Interestingly, only the cytosolic-localized GmSHMT08c presented SNP clusters that were associated with SCN resistance, supporting our mutational analysis. Although eight GmSHMT members respond to the nematode infestation, functional and mutational analysis has shown the absence of functional redundancy in resistance to SCN. Structural analysis and protein homology modeling showed the presence of spontaneous mutations at important residues within the GmSHMT proteins, suggesting the presence of altered enzyme activities based on substrate affinities. Due to the accumulation of mutations during the evolution of the soybean genome, the other GmSHMT members have undergone neofunctionalization and subfunctionalization events.
Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glycine max/genética , Mutação , Proteínas de Plantas/genética , Tylenchoidea/fisiologia , Alelos , Animais , Duplicação Gênica , Haplótipos , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Mutagênese , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Glycine max/parasitologiaRESUMO
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Assuntos
Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Tylenchoidea/patogenicidade , Animais , Sequência de Bases , Feminino , Loci Gênicos , Genoma de Planta , Haplótipos , Doenças das Plantas/parasitologia , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Glycine max/parasitologiaRESUMO
The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.
Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Óleo de Soja/metabolismo , Sacarose/metabolismo , Mapeamento Cromossômico/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Análise de Sequência de DNA , Glycine max/metabolismoRESUMO
KEY MESSAGE: Integration of genetic analysis, molecular biology, and genomic approaches drastically enhanced our understanding of genetic control of nematode resistance and provided effective breeding strategies in soybeans. Three nematode species, including soybean cyst (SCN, Heterodera glycine), root-knot (RKN, Meloidogyne incognita), and reniform (RN, Rotylenchulus reniformis), are the most destructive pests and have spread to soybean growing areas worldwide. Host plant resistance has played an important role in their control. This review focuses on genetic, genomic studies, and breeding efforts over the past two decades to identify and improve host resistance to these three nematode species. Advancements in genetics, genomics, and bioinformatics have improved our understanding of the molecular and genetic mechanisms of nematode resistance and enabled researchers to generate large-scale genomic resources and marker-trait associations. Whole-genome resequencing, genotyping-by-sequencing, genome-wide association studies, and haplotype analyses have been employed to map and dissect genomic locations for nematode resistance. Recently, two major SCN-resistant loci, Rhg1 and Rhg4, were cloned and other novel resistance quantitative trait loci (QTL) have been discovered. Based on these discoveries, gene-specific DNA markers have been developed for both Rhg1 and Rhg4 loci, which were useful for marker-assisted selection. With RKN resistance QTL being mapped, candidate genes responsible for RKN resistance were identified, leading to the development of functional single nucleotide polymorphism markers. So far, three resistances QTL have been genetically mapped for RN resistance. With nematode species overcoming the host plant resistance, continuous efforts in the identification and deployment of new resistance genes are required to support the development of soybean cultivars with multiple and durable resistance to these pests.
Assuntos
Resistência à Doença/genética , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/genética , Tylenchoidea , Animais , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genômica , Técnicas de Genotipagem , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
KEY MESSAGE: TAS atasiRNA-producing region swapping used one-step, high efficiency, and high fidelity directional TC-cloning. Uniform silencing was achieved without lethality using miRNA trigger- TAS overexpression fusion cassettes to generate 21-nt atasiRNA. Plant transgenic technologies are very important for basic plant research and biotechnology. Artificial trans-acting small interfering RNA (atasiRNA) represents an attractive platform with certain advantages over other silencing approaches, such as hairpin RNA, artificial microRNA (amiRNA), and virus-induced gene silencing (VIGS). In this study, we developed two types of constructs for atasiRNA-mediated gene silencing in plants. To functionally validate our constructs, we chose TAS1a as a test model. Type 1 constructs had miR173-precursor sequence fused with TAS1a locus driven by single promoter-terminator cassette, which simplified the expression cassette and resulted in uniform gene silencing. Type 2 constructs contained two separate cassettes for miR173 and TAS1a co-expression. The constructs in each type were further improved by deploying the XcmI-based TC-cloning system for highly efficient directional cloning of short DNA fragments encoding atasiRNAs into TAS1a locus. The effectiveness of the constructs was demonstrated by cloning an atasiRNA DNA into the TC site of engineered TAS1a and silencing of CHLORINA 42 (CH42) gene in Arabidopsis. Our results show that the directional TC-cloning of the atasiRNA DNA into the engineered TAS1a is highly efficient and the miR173-TAS1a fusion system provides an attractive alternative to achieve moderate but more uniform gene silencing without lethality, as compared to conventional two separate cassettes for miR173 and TAS locus co-expression system. The design principles described here should be applicable to other TAS loci such as TAS1b, TAS1c, TAS2, or TAS3, and cloning of amiRNA into amiRNA stem-loop.
Assuntos
Clonagem Molecular/métodos , DNA de Plantas/genética , Inativação Gênica , Genes de Plantas , Vetores Genéticos/metabolismo , RNA Interferente Pequeno/metabolismo , Arabidopsis/genética , Sequência de Bases , Primers do DNA/metabolismo , Engenharia Genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Folhas de Planta/genética , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes , Nicotiana/genéticaRESUMO
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a serious soybean pest. The use of resistant cultivars is an effective approach for preventing yield loss. In this study, 19,652 publicly available soybean accessions that were previously genotyped with the SoySNP50K iSelect BeadChip were used to evaluate the phylogenetic diversity of SCN resistance genes Rhg1 and Rhg4 in an attempt to identify novel sources of resistance. The sequence information of soybean lines was utilized to develop KASPar (KBioscience Competitive Allele-Specific PCR) assays from single nucleotide polymorphisms (SNPs) of Rhg1, Rhg4, and other novel quantitative trait loci (QTL). These markers were used to genotype a diverse set of 95 soybean germplasm lines and three recombinant inbred line (RIL) populations. SNP markers from the Rhg1 gene were able to differentiate copy number variation (CNV), such as resistant-high copy (PI 88788-type), low copy (Peking-type), and susceptible-single copy (Williams 82) numbers. Similarly, markers for the Rhg4 gene were able to detect Peking-type (resistance) genotypes. The phylogenetic information of SCN resistance loci from a large set of soybean accessions and the gene/QTL specific markers that were developed in this study will accelerate SCN resistance breeding programs.
Assuntos
Resistência à Doença/genética , Genômica/métodos , Glycine max/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA , Marcadores Genéticos/genética , Genoma de Planta/genética , Genótipo , Interações Hospedeiro-Parasita , Filogenia , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Glycine max/classificação , Glycine max/parasitologia , Tylenchoidea/fisiologiaRESUMO
Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.
Assuntos
Arabidopsis/fisiologia , Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Ipomoea batatas/enzimologia , Pressão Osmótica , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Dados de Sequência Molecular , Raízes de Plantas/fisiologia , Tolerância ao Sal , Homologia de Sequência de AminoácidosRESUMO
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe), southern root-knot nematode [SRKN, Meloidogyne incognita (Kofoid and White) Chitwood] and reniform nematode (RN, Rotylenchulus reniformis Linford and Oliveira) are three important plant-parasitic pests in soybean. Previous study showed that plant introduction (PI) 567516C harbored novel quantitative trait loci (QTL) conferring SCN resistance to soybean. However, QTL underlying resistance to SRKN and RN in PI 567516C remain unknown. The objectives of this study were to identify QTL for resistance to SRKN and RN in PI 567516C. Two hundred and forty-seven F6:9 recombinant inbred lines, derived from a cross between cultivar Magellan and PI 567516C, were evaluated for resistance to SRKN and RN. Two hundred and thirty-eight simple sequence repeats and 687 single nucleotide polymorphism markers were used to construct a genetic linkage map. Three significant QTL associated with resistance to SRKN were mapped on chromosomes (Chrs.) 10, 13 and 17. Two significant QTL associated with resistance to RN were detected on Chrs. 11 and 18. Whole-genome resequencing revealed that there might be Peking-type Rhg1 in PI 567516C. Our study provides useful information to employ PI 567516C in soybean breeding in order to develop new cultivars with resistance to multiple nematodes.
RESUMO
BACKGROUND: Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most devastating pathogen of soybean. Many gene expression profiling studies have been conducted to investigate the responses of soybean to the infection by this pathogen using primarily the first-generation soybean genome array that covered approximately 37,500 soybean transcripts. However, no study has been reported yet using the second-generation Affymetrix soybean whole-genome transcript array (Soybean WT array) that represents approximately 66,000 predicted soybean transcripts. RESULTS: In the present work, the gene expression profiles of two soybean plant introductions (PIs) PI 437654 and PI 567516C (both resistant to multiple SCN HG Types) and cultivar Magellan (susceptible to SCN) were compared in the presence or absence of the SCN inoculum at 3 and 8 days post-inoculation using the Soybean WT array. Data analysis revealed that the two resistant soybean lines showed distinctive gene expression profiles from each other and from Magellan not only in response to the SCN inoculation, but also in the absence of SCN. Overall, 1,413 genes and many pathways were revealed to be differentially regulated. Among them, 297 genes were constitutively regulated in the two resistant lines (compared with Magellan) and 1,146 genes were responsive to the SCN inoculation in the three lines, with 30 genes regulated both constitutively and by SCN. In addition to the findings similar to those in the published work, many genes involved in ethylene, protein degradation, and phenylpropanoid pathways were also revealed differentially regulated in the present study. GC-rich elements (e.g., GCATGC) were found over-represented in the promoter regions of certain groups of genes. These have not been observed before, and could be new defense-responsive regulatory elements. CONCLUSIONS: Different soybean lines showed different gene expression profiles in the presence and absence of the SCN inoculum. Both inducible and constitutive gene expression may contribute to resistance to multiple SCN HG Types in the resistant soybean PI lines. Ethylene, protein degradation, and phenylpropanoid pathways, as well as many other pathways reported previously, may play important roles in mediating the soybean-SCN interactions. The revealed genes, pathways, and promoter elements can be further explored to regulate or engineer soybean for resistance to SCN.