Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Cancer ; 23(1): 233, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915069

RESUMO

BACKGROUND: Late detection of hepatocellular carcinoma (HCC) results in an overall 5-year survival rate of less than 16%. Liquid biopsy (LB) assays based on detecting circulating tumor DNA (ctDNA) might provide an opportunity to detect HCC early noninvasively. Increasing evidence indicates that ctDNA detection using mutation-based assays is significantly challenged by the abundance of white blood cell-derived mutations, non-tumor tissue-derived somatic mutations in plasma, and the mutational tumor heterogeneity. METHODS: Here, we employed concurrent analysis of cancer-related mutations, and their fragment length profiles to differentiate mutations from different sources. To distinguish persons with HCC (PwHCC) from healthy participants, we built a classification model using three fragmentomic features of ctDNA through deep sequencing of thirteen genes associated with HCC. RESULTS: Our model achieved an area under the curve (AUC) of 0.88, a sensitivity of 89%, and a specificity of 82% in the discovery cohort consisting of 55 PwHCC and 55 healthy participants. In an independent validation cohort of 54 PwHCC and 53 healthy participants, the established model achieved comparable classification performance with an AUC of 0.86 and yielded a sensitivity and specificity of 81%. CONCLUSIONS: Our study provides a rationale for subsequent clinical evaluation of our assay performance in a large-scale prospective study.


Assuntos
Carcinoma Hepatocelular , DNA Tumoral Circulante , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Estudos Prospectivos , Biomarcadores Tumorais/genética , Mutação
2.
Sci Rep ; 11(1): 16436, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385540

RESUMO

Targeted therapy with tyrosine kinase inhibitors (TKI) provides survival benefits to a majority of patients with non-small cell lung cancer (NSCLC). However, resistance to TKI almost always develops after treatment. Although genetic and epigenetic alterations have each been shown to drive resistance to TKI in cell line models, clinical evidence for their contribution in the acquisition of resistance remains limited. Here, we employed liquid biopsy for simultaneous analysis of genetic and epigenetic changes in 122 Vietnamese NSCLC patients undergoing TKI therapy and displaying acquired resistance. We detected multiple profiles of resistance mutations in 51 patients (41.8%). Of those, genetic alterations in EGFR, particularly EGFR amplification (n = 6), showed pronounced genome instability and genome-wide hypomethylation. Interestingly, the level of hypomethylation was associated with the duration of response to TKI treatment. We also detected hypermethylation in regulatory regions of Homeobox genes which are known to be involved in tumor differentiation. In contrast, such changes were not observed in cases with MET (n = 4) and HER2 (n = 4) amplification. Thus, our study showed that liquid biopsy could provide important insights into the heterogeneity of TKI resistance mechanisms in NSCLC patients, providing essential information for prediction of resistance and selection of subsequent treatment.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Biópsia Líquida/métodos , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Coortes , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade
3.
Front Oncol ; 10: 1351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850431

RESUMO

Population-specific profiling of mutations in cancer genes is of critical importance for the understanding of cancer biology in general as well as the establishment of optimal diagnostics and treatment guidelines for that particular population. Although genetic analysis of tumor tissue is often used to detect mutations in cancer genes, the invasiveness and limited accessibility hinders its application in large-scale population studies. Here, we used ultra-deep massive parallel sequencing of plasma cell free DNA (cfDNA) to identify the mutation profiles of 265 Vietnamese patients with advanced non-small cell lung cancer (NSCLC). Compared to a cohort of advanced NSCLC patients characterized by sequencing of tissue samples, cfDNA genomic testing, despite lower mutation detection rates, was able to detect major mutations in tested driver genes that reflected similar mutation composition and distribution pattern, as well as major associations between mutation prevalence and clinical features. In conclusion, ultra-deep sequencing of plasma cfDNA represents an alternative approach for population-wide genetic profiling of cancer genes where recruitment of patients is limited to the accessibility of tumor tissue site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA