Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1340160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515623

RESUMO

To study the relationship between the diversity of the surface microbial community and tobacco flavor, and to improve tobacco quality using microorganisms. The microbial community composition and diversity of 14 samples of flue-cured tobacco from tobacco-producing areas in Yunnan with varying grades were analyzed by high-throughput sequencing. PICRUSt was used for predicting microbial functions. A strain of Bacillus amyloliquefaciens W6-2 with the ability to degrade pectin was screened from the surface of flued-cured tobacco leaves from Yunnan reroasted tobacco leave. The enzyme preparation was prepared through fermentation and then applied for treating flue-cured tobacco. The improvement effect was evaluated by measuring the content of macromolecule and the changes in volatile components, combined with sensory evaluations. The bacterial communities on the surface of flue-cured tobacco exhibited functional diversity, consisting primarily of Variovorax, Pseudomonas, Sphingomonas, Burkholderia, and Bacillus. These bacterial strains played a role in the aging process of flue-cured tobacco leaves by participating in amino acid metabolism and carbohydrate metabolism. These metabolic activity converted complex macromolecules into smaller molecular compounds, ultimately influence the smoking quality and burning characteristics of flue-cured tobacco. The pectinase preparation produced through fermentation using W6-2 has been found to enhance the aroma and sweetness of flue-cured tobacco, leading to improved aroma, reduced impurities, and enhanced smoothness. Additionally, the levels of pectin, cellulose, and hemicellulose decreased, while the levels of water-soluble sugar and reducing sugar increased, and the contents of esters, ketones, and aldehydes increased, and the contents of benzoic acid decreased. The study revealed the correlation between surface microorganisms and volatile components of Yunnan tobacco leaves, and the enzyme produced by the pectin-degrading bacteria W6-2 effectively improved the quality of flue-cured tobacco.

2.
Front Biosci (Landmark Ed) ; 29(2): 89, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38420804

RESUMO

BACKGROUND: Aberrant splicing has been closely associated with human cancer, though the precise underlying mechanisms linking the two remain not fully understood. Investigating the role of splicing factors in cancer progression may aid in the development of targeted therapies for dysregulated splicing, thereby opening up new avenues for cancer treatment. RNA-binding motif 4 (RBM4) has been identified as a critical participant in the condensin II complex, which is involved in chromosome condensation and stabilization during mitosis. Its significance in tumors is currently gaining attention. The genetic characteristics of RBM4 suggest its potential to elucidate the malignant progression of tumors in a broader context, encompassing various types of cancer, known as pan-cancer. METHODS: This study aims to comprehensively explore the potential function of RBM4 in pan-cancer by leveraging existing databases such as The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). RESULTS: RBM4 is found to be overexpressed in almost all tumors and exhibits significant prognostic and diagnostic efficacy. The correlation between RBM4 and immune signatures, including immune cell infiltration and immune checkpoint genes, indicates that RBM4 could serve as a guiding factor for immunotherapy. CONCLUSIONS: As a member of the pan-oncogene, RBM4 has the potential to become a biomarker and therapeutic target for various malignant tumors, offering novel possibilities for precision medicine.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Prognóstico , Neoplasias/genética , Splicing de RNA , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Sci Total Environ ; 922: 171245, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408656

RESUMO

Cadmium (Cd) and arsenic (As) are precedence-controlled contaminants in paddy soils, that can easily accumulate in rice grains. Limestone and sepiolite (LS) compound passivator can obviously reduce Cd uptake in rice, whereas Si fertilizer can effectively decrease rice As uptake. Here, the synergistic effects of the LS compound passivator coupled with Si fertilizer (LSCS) on the soil pH and availability of Si, Cd, and As, as well as rice grain Cd and As accumulation and its health risk were studied based on a 3-year consecutive field experiment. The results showed that the LSCS performed the best in terms of synchronously decreasing soil Cd and As availability and rice Cd and As uptake. In the LSCS treatments, soil pH gradually decreased with the rice-planting season, while soil available Cd and As contents gradually increased, suggesting that the influence of LSCS on Cd and As availability gradually weakened with rice cultivation. Nonetheless, the contents of Cd and inorganic As (i-As) in rice grains treated with LSCS were slightly affected by cultivation but were significantly lower than the single treatments of LS compound passivator or Si fertilizer. According to the Cd and As limit standards in food (GB2762-2022), the Cd and i-As content in rice grains can be lowered below the standard by using the 4500 kg/hm2 LS compound passivator coupled with 90 kg/hm2 Si fertilizer in soil and spraying 0.4 g/L Si fertilizer on rice leaves for at least three years. Furthermore, health risk evaluation revealed that LSCS treatments significantly reduced the estimated daily intake, annual excess lifetime cancer risk, and hazard quotient of Cd and i-As in rice grains. These findings suggest that LSCS could be a viable approach for reducing Cd and As accumulation in rice grains and lowering the potential health risks associated with rice.


Assuntos
Arsênio , Silicatos de Magnésio , Oryza , Poluentes do Solo , Cádmio/análise , Arsênio/análise , Oryza/química , Silício/química , Fertilizantes/análise , Poluentes do Solo/análise , Solo/química , Carbonato de Cálcio
4.
Cancers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067271

RESUMO

Chimeric antigen receptor-engineered T cells (CAR Ts) targeting CD19 have shown unprecedented prognosis in treating hematological cancers. However, the lack of a tumor-specific antigen as the target and an inhospitable tumor environment limit the clinical application of CAR T in solid tumors. Tumor-infiltrating T lymphocytes (TIL) exhibit diverse T cell receptor clonality and superior tumor-homing abilities. Therefore, in our study, human CD19-target TIL CAR-Ts armed with CD3ζ and 4-1BB signaling domains were constructed. Mouse colorectal cancer CT26 cells expressing human CD19 (hCD19+-CT26) were developed to assess the anti-tumor activity of TIL CAR-T cells, both in vitro and in vivo. Compared with splenic CAR T adoptive transfer, TIL CAR-T administration showed superior tumor suppression ability in hCD19+-CT26 tumor-bearing mice. Furthermore, more T cells were found at the tumor site and had lower exhaustion-related inhibitory receptor (T cell immunoglobulin and mucin domain-containing protein 3, Tim3) expression and higher immune memory molecule (CD62L) expression. Overall, we provided an artificial tumor-specific antigen in solid tumors and demonstrated that combined CAR-expressing TIL-Ts (TIL CAR-Ts) exhibited strong anti-tumor activity, with improved T cell infiltration and immune memory. Our humanized tumor antigen presented platform of mice suggests that TIL CAR-T-based adoptive therapy could be a promising strategy for solid cancer treatment.

5.
Clin Transl Med ; 13(11): e1475, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962020

RESUMO

BACKGOUND: Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4. METHODS: CRC tissues from mice and SW620 cells were used as research subjects. Clinical databases of CRC patients were analyzed to investigate the association between SETD2 and SMAD4. SETD2 and SMAD4 double-knockout mice were established to further investigate the role of SETD2 in SMAD4-deficient CRC. The intestinal epithelial cells (IECs) were isolated for RNA sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) to explore the mechanism and the key molecules resulting in CRC. Molecular and cellular experiments were conducted to analyze the role of SETD2 in SMAD4-deficient CRC. Finally, rescue experiments were performed to confirm the molecular mechanism of SETD2 in the development of SMAD4-dificient CRC. RESULTS: The deletion of SETD2 promotes the malignant progression of SMAD4-deficient CRC. Smad4Vil-KO ; Setd2Vil-KO mice developed a more severe CRC phenotype after AOM/DSS induction, with a larger tumour size and a more vigorous epithelial proliferation rate. Further mechanistic findings revealed that the loss of SETD2 resulted in the down-regulation of DUSP7, which is involved in the inhibition of the RAS/ERK signalling pathway. Finally, the ERK1/2 inhibitor SCH772984 significantly attenuated the progression of CRC in Smad4Vil-KO ;Setd2Vil-KO mice, and overexpression of DUSP7 significantly inhibited the proliferation rates of SETD2KO ; SMAD4KO SW620 cells. CONCLUSIONS: Our results demonstrated that SETD2 inhibits the RAS/ERK signaling pathway by facilitating the transcription of DUSP7 in SMAD4-deficient CRC, which could provide a potential therapeutic target for the treatment of advanced CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Humanos , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Fosfatases de Especificidade Dupla/metabolismo , Células Epiteliais/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo
6.
Clin Transl Med ; 13(11): e1468, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933774

RESUMO

BACKGROUND: Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain-containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2-mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. METHODS: Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel-Lindau (VHL) double-knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. RESULTS: SETD2 deficiency leads to severe renal fibrosis in VHL-deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor-ß (TGF-ß)/Smad signalling pathway, thereby preventing the activation of the TGF-ß/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF-ß/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. CONCLUSIONS: Our findings reveal the role of SETD2-mediated H3K36me3 of Smad7 in regulating the TGF-ß/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.


Assuntos
Histona-Lisina N-Metiltransferase , Insuficiência Renal Crônica , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Fibrose , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
BMC Gastroenterol ; 23(1): 231, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420205

RESUMO

BACKGROUND: Helicobacter pylori infection and associated diseases are a growing global public health issue. H. pylori infection is the major cause of gastric cancer, over 90% of duodenal ulcers, and over 70% of gastric ulcers. The infection rate of H. pylori is approximately 50%, and approximately 50% of new cases of gastric cancer worldwide occur in China. Bismuth (BI)-based quadruple therapy is recommended as the first-line treatment for H. pylori in China. Vonoprazan (VPZ), a new potassium-competitive acid blocker that can inhibit gastric acid secretion more effectively than proton pump inhibitors (PPIs), has been combined with antibiotics to effectively eradicate H. pylori. In this study, we compared the efficacy and safety of two VPZ-based therapies with that of BI-based therapy for H. pylori treatment. METHODS: A three-armed randomised controlled trial (RCT) is being conducted in Shenzhen, with 327 participants recruited from the Gastroenterology Clinic of the University of Hong Kong-Shenzhen Hospital. Patients were diagnosed with H. pylori infection based on a positive 13C-urea breath test (UBT). Patients are kept naïve to their treatment and are randomly assigned in a 1:1:1 ratio to either VPZ-based triple, VPZ-based dual, or BI-based quadruple therapy for 14 days. All groups are subjected to follow-up evaluations of safety, adverse drug reactions, and clinical variables in the first, second, and fourth weeks after treatment. Successful eradication is confirmed by a negative 13C-UBT six weeks after treatment. If initial treatment fails, (1) those patients are turned to another regimen, or (2) a drug resistance test is conducted, after which an individualised treatment regimen shall be prescribed according to antimicrobial susceptibility testing. The resulting data will be evaluated using intention-treat and a per-protocol analysis. DISCUSSION: This study is the a RCT aims to evaluate the efficacy and safety of 14-day VPZ-based triple and dual therapies in comparison with BI-based quadruple therapy. The outcomes of this study may allow treatment recommendations and update drug instructions in China. TRIAL REGISTRATION: Chinese Clinical Trial Registry (No. ChiCTR2200056375). Registered on February 4, 2022, https://www.chictr.org.cn/showproj.aspx?proj=141314.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Bismuto/efeitos adversos , Neoplasias Gástricas/tratamento farmacológico , Quimioterapia Combinada , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/diagnóstico , Antibacterianos/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Amoxicilina/efeitos adversos , Resultado do Tratamento , Claritromicina/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Front Microbiol ; 14: 1211936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440887

RESUMO

Starch is an essential factor affecting the quality of flue-cured tobacco, and high starch content can affect the sensory quality and safety. Recently, the degradation of macromolecules in tobacco raw materials by using additional microorganisms to improve their intrinsic quality and safety has become a new research hotspot in the tobacco industry. However, the technical maturity and application scale are limited. Our study analyzed the correlation between microbial community composition and volatile components on the surface of tobacco leaves from 14 different grades in Fujian tobacco-producing areas. The PICRUSt software was utilized to predict the function of the microbial community present in tobacco leaves. Furthermore, dominant strains that produced amylase were screened out, and an enzyme solution was prepared to enhance the flue-cured tobacco flavor. Changes in the content of macromolecules and volatile components were determined, and sensory evaluations were conducted to assess the overall quality of the tobacco leaves. The results showed that the dominant bacterial genera on the surface of Fujian tobacco leaves were Variovorax, Sphingomonas, Bacillus, etc. Bacillus was positively correlated with various volatile components, which contributed to the sweet and aromatic flavors of Fujian flue-cured tobacco. The main genetic functions of Fujian flue-cured tobacco surface bacteria were carbohydrate metabolism and amino acid metabolism. After treating flue-cured tobacco with an enzyme preparation prepared by the fermentation of Paenibacillus amylolyticus A17 #, the content of starch, pectin, and cellulose in flue-cured tobacco decreased significantly compared with the control group. Meanwhile, the content of total soluble sugar and reducing sugar was significantly increased, and the volatile aroma components, such as 3-hydroxy--damascone, 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-Pyran-4-one, ethyl palmitate, ethyl linolenic acid, etc., were significantly increased. The aroma quality and quantity of flue-cured tobacco were enhanced, while impurities were reduced. The smoke characteristics were improved, with increased fineness, concentration, and moderate strength. The taste characteristics were also improved, with reduced irritation and a better aftertaste. In conclusion, Bacillus, as the dominant genus in the abundance of bacterial communities on tobacco surfaces in Fujian, had an essential impact on the flavor of tobacco leaves by participating in carbohydrate metabolism and finally forming the unique flavor style of flue-cured tobacco in Fujian tobacco-producing areas. Paenibacillus amylolyticus A17 #, a target strain with amylase-producing ability, was screened from the surface of Fujian flue-cured tobacco. The enzyme preparation, produced by the fermentation of Paenibacillus amylolyticus A17 #, was utilized to reduce the content of macromolecules, increase the content of water-soluble total sugar and reducing sugar, and produce a variety of crucial volatile aroma components, which had a significant improvement on the quality of tobacco leaves.

9.
Front Med (Lausanne) ; 10: 983644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936203

RESUMO

Objective: Transfusion of HLA-matched platelets can reduce the effect of alloimmune responses on platelet transfusion efficacy; however, finding HLA-matched platelets in the population is nearly impossible. Almost all HLA-matched platelets from related are half-matched, but the hemostatic efficacy of related donor platelets is unclear. Our goal was to compare the hemostatic effect of related donated platelets and unrelated donors platelets. Methods: In this retrospective cohort study, we included acute leukemia and myelodysplastic syndrome patients with thrombocytopenia after chemotherapy. These patients were all transfused with platelets. This study excluded patients younger than 16 years and older than 65 years, or patients with abnormal coagulation parameters during platelet transfusion. We compared the hemostatic effect of related donated platelets and unrelated donors platelet. The primary outcome was transfusion efficacy after platelet transfusion, and the number of platelet counts and corrected count increments at 24 h after platelet transfusion. Result: We analyzed 31 patients who received platelet transfusions from related donors (Treatment group) and 35 patients who received platelet transfusions from unrelated donors (Comparator group). Except for the relatively small proportion of patients with myelodysplastic syndrome in the treatment group, baseline clinical and laboratory characteristics were similar between the two groups. Hemostasis and prevention of bleeding in the treatment group showed significant superiority; the number of platelets increased 24 h after platelet transfusion in the treatment group was significantly higher than that in the comparator group. After 24 h, the corrected count increments treatment group was also higher than the comparator group; in the treatment group, the transfusion effect was better when the three sites of HLA-A, B, and C were identical, and the different blood types of platelet donors and recipients did not affect the transfusion effect. Conclusion: Related donated platelets have better hemostasis and prevention effects, and no increase in adverse blood transfusion reactions. It may be a better transfusion strategy for platelet refractoriness patients in emergency situations.

10.
Exp Dermatol ; 32(1): 24-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36134483

RESUMO

In the past 10 years, the systemic treatment of advanced melanoma has undergone tremendous changes through the development of targeted therapy. However, there is still a long way to go. This study aims to characterize the function and interaction of ITGAX, SERPINB8 and furin in BRAF V600E mutant melanoma. Differentially expressed genes related to BRAF V600E mutation and BRAFi treatment were obtained by analysing GSE141484 and GSE22838. two kinds of BRAFi (Vemurafenib, 10 µM; Dabrafenib, 1 µM) were used to treat A375 and 1205Lu cells, respectively. The expression of ITGAX, SERPINB8 and Furin in A375 and 1205Lu cells was down-regulated by specific siRNAs, and cell proliferation, clone formation and invasion were detected by CCK-8, colony formation and transwell assays. The physical binding of furin and SERPINB8 was detected by immunoprecipitation. BRAFi treatment down-regulated the ITGAX and SERPINB8 expression and did not change furin expression. Knockdown of ITGAX and SERPINB8 both inhibited the proliferation and invasion of A375 and 1205Lu cells. Knocking down SERPINB8 down-regulated the expression of ITGAX. Furin knockdown and inhibitors all up-regulated the protein level of ITGAX. SERPINB8 can physically bind to furin. In summary, SERPINB8 and furin regulate the expression of ITGAX in melanoma cells, and ITGAX significantly promotes the proliferation and invasion of melanoma cells.


Assuntos
Melanoma , Inibidores de Proteínas Quinases , Humanos , Antígeno CD11c , Proliferação de Células , Furina/genética , Melanoma/genética , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-36337729

RESUMO

Introduction: Postoperative atrial fibrillation (POAF), characterized as AF that arises 1-3 days after surgery, occurs after 30%-40% of cardiac and 10%-20% of non-cardiac surgeries, and is thought to arise due to transient surgery-induced triggers acting on a preexisting vulnerable atrial substrate often associated with inflammation and autonomic nervous system dysfunction. Current experimental studies often rely on human atrial tissue samples, collected during surgery prior to arrhythmia development, or animal models such as sterile pericarditis and atriotomy, which have not been robustly characterized. Aim: To characterize the demographic, electrophysiologic, and inflammatory properties of a POAF mouse model. Methods and Results: A total of 131 wild-type C57BL/6J mice were included in this study. A total of 86 (65.6%) mice underwent cardiothoracic surgery (THOR), which consisted of bi-atrial pericardiectomy with 20 s of aortic cross-clamping; 45 (34.3%) mice underwent a sham procedure consisting of dissection down to but not into the thoracic cavity. Intracardiac pacing, performed 72 h after surgery, was used to assess AF inducibility. THOR mice showed greater AF inducibility (38.4%) compared to Sham mice (17.8%, P = 0.027). Stratifying the cohort by tertiles of age showed that the greatest risk of POAF after THOR compared to Sham occurred in the 12-19-week age group. Stratifying by sex showed that cardiothoracic (CT) surgery increased POAF risk in females but had no significant effect in males. Quantitative polymerase chain reaction of atrial samples revealed upregulation of transforming growth factor beta 1 (TGF-ß1) and interleukin 6 (IL6) and 18 (IL18) expression in THOR compared to Sham mice. Conclusion: Here, we demonstrate that the increased POAF risk associated with CT surgery is most pronounced in female and 12-19-week-old mice, and that the expression of inflammatory cytokines is upregulated in the atria of THOR mice prone to inducible AF.

12.
BMC Immunol ; 23(1): 55, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376784

RESUMO

BACKGROUND: Antineutrophil Cytoplasmic Antibodies (ANCA) associated glomerulonephritis (AGN) is a group of autoimmune diseases and mono-macrophages are involved in its glomerular injuries. In this study, we aim to investigate the role of CD206+ mono-macrophages in AGN. METHODS: 27 AGN patients (14 active AGN, 13 remissive AGN) together with healthy controls (n = 9), disease controls (n = 6) and kidney function adjusted controls (n = 9) from Department of Nephrology, Ruijin hospital were recruited. Flow cytometry was used to study proportion of CD206+ cells in peripheral blood. Immunohistochemistry for CD206 staining was performed and CD206 expression was scored in different kidney regions. Serum soluble CD206 (sCD206) was measured by enzyme-linked immunosorbent assay (ELISA). We also generated murine myeloperoxidase (MPO) (muMPO) ANCA by immunizing Mpo-/- mice. Mouse bone marrow-derived macrophages (BMDMs) from wild C57BL/6 mice and peripheral blood mononuclear cell (PBMC) derived macrophages from healthy donors were treated with MPO ANCA with or without its inhibitor AZD5904 to investigate the effects of MPO-ANCA on CD206 expression. RESULTS: The proportion of peripheral CD206+CD68+ cells in active AGN patients were significantly higher than that in remissive patients (p < 0.001), healthy controls (p < 0.001) and kidney function adjusted controls (p < 0.001). Serum sCD206 level in active AGN patients was higher than that in healthy controls (p < 0.05) and remissive patients (p < 0.01). Immunohistochemistry showed CD206 was highly expressed in different kidney regions including fibrinoid necrosis or crescent formation, glomeruli, periglomerular and tubulointerstitial compartment in active AGN patients in comparison with disease controls. Further studies showed MPO ANCA could induce CD206 expression in BMDMs and PBMC derived macrophages and such effects could be reversed by its inhibitor AZD5904. CONCLUSION: ANCA could induce CD206 expression on mono-macrophages and CD206+ mono-macrophages are activated in AGN. CD206 might be involved in the pathogenesis of AAV and may be a potential target for the disease.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Glomerulonefrite , Animais , Camundongos , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo
13.
Front Bioeng Biotechnol ; 10: 1066617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406231

RESUMO

In the past decades, diseases such as wound infection, cancer, bone defect and osteoarthritis have constantly threatened the public health. However, the traditional treatment has many insufficiencies, such as high cost, easy recurrence and high biological toxicity. Hydrogel is a material with three-dimensional network structure, which has a series of advantages, such as injectability, self-heal ability, easy loading and controllability of drug release, and excellent biocompatibility. Therefore, it is extensively used in drug delivery, antibacterial, anti-cancer and other fields. However, the traditional hydrogels have the single performance, and therapeutic efficacy is often rely on the drugs loaded on them to cure diseases, which cannot achieve sustainable therapeutic effect. In order to solve this problem, photothermal nano hydrogel with photothermal agent (PTA) has become an ideal material due to its excellent physical and chemical properties. Photothermal nano hydrogels used in photothermal therapy (PTT) can exploit the photothermal effect of photothermal agent to increase local temperature and control the sol-gel phase transition behavior of hydrogels, so they are widely used in drug release, photothermal sterilization, photothermal inhibition of cancer cells and enhancement of bone repair. To sum up, this paper introduces the preparation of hydrogels with photothermal nanomaterials, and discusses their applications in the fields of drug release, photothermal sterilization, photothermal cancer cell inhibition and enhanced bone repair.

14.
Biomolecules ; 12(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358977

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a group of immature and heterogeneous myeloid cells with immunosuppressive functions. MDSCs play important roles in the pathogenesis of cancer, chronic inflammatory diseases, and many autoimmune disorders. The accumulation and activation of MDSCs can be regulated by tumor necrosis factor α (TNF-α). In this review, we summarize the roles played by TNF-α in the recruitment, immunosuppressive functions, and chemotaxis of MDSCs, and discuss the potential therapeutic effects of TNF-α upon these cells in tumor growth and some inflammatory disorders.


Assuntos
Doenças Autoimunes , Células Supressoras Mieloides , Neoplasias , Humanos , Fator de Necrose Tumoral alfa , Transdução de Sinais , Quimiotaxia , Neoplasias/patologia
15.
Curr Res Food Sci ; 5: 1320-1329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072509

RESUMO

At present, lactic acid bacteria (LAB) fermentation is commonly considered as an effective strategy to remarkably drive the improvement of flavor and nutritional value, and extend shelf-life of fermented foods. In this study, the by-product of tea manufacture, including broken tea segments and tea stalk, was used to produce fermented tea beverages. In addition, the residual components of matrices and bacterial metabolites were measured, as well as the sensory quality of the beverage was evaluated. Subsequently, the determination of monosaccharides, volatile aroma profile, free amino acids, biogenic amines and organic acids, and several functional substances involving γ-aminobutyric acid (GABA), polyphenols, caffeine and L-theanine were carried out. The results revealed that glucose, fructose, mannose and xylose are principal carbon source of Lactobacillus plantarum RLL68 during the fermentation; moreover, the abundance of aromatic substances is varied dramatically and the characteristic flavors of the beverages, particularly fermentation for 48 h and 72 h, are imparted with sweet and fruity odor on the basis of initial nutty and floral odor; Meanwhile, the organoleptic qualities of fermented beverages is also enhanced. Furthermore, the levels of organic acids and GABA are elevated, while the bitter amino acids, as well as some bioactive substances including tea polyphenols and L-theanine are declined; Besides, the caffeine level almost remains constant, and quite low levels of various biogenic amines are also observed. The results of this study will provide the theoretical basis to steer and control the flavor and quality of the fermented tea beverages in the future.

16.
Ann Transl Med ; 10(8): 463, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571421

RESUMO

Background: Hyperthermic intraperitoneal chemotherapy (HIPEC) has been shown to be clinically effective, but the mechanisms by which hyperthermia enhances the sensitivity of cells to chemotherapeutic drugs has not yet been elucidated. Methods: To identify the key molecules involved in thermochemotherapy, this study used mass spectrometry (MS)-based quantitative proteomics technology to analyze the effects of thermochemotherapy on the heat-sensitive ovarian cancer cell line A2780. We divided the A2780 cell line into four groups, one group served as blank control, and the other three groups were stimulated by oxaliplatin, stimulated by hyperthermia at 42 ℃, and stimulated by hyperthermia combined with oxaliplatin. Samples were then collected for tandem mass tag (TMT) labeling, high-performance liquid chromatography fractionation, and MS-based quantitative proteomics for analysis The differentially expressed proteins were quantitatively compared and identified, and Gene Ontology (GO) assessment and cluster analyses were performed. Finally, the above MS results were verified again by Western blotting experiments. Results: A total of 349 differentially expressed proteins were identified between cells treated with chemotherapy alone (group B) and cells treated with a combination of chemotherapy and hyperthermia (group D). There were 145 upregulated proteins and 204 downregulated proteins. Among the top 20 proteins with significantly different expression levels, nearly two-thirds were involved in DNA damage repair. These proteins were subsequently verified by Western blot analysis. Indeed, consistent with MS data, the expression of the RBL1 protein was significantly upregulated in cells treated with thermochemotherapy (group D) compared to cells treated with chemotherapy alone (group B). Conclusions: In heat-sensitive ovarian cancer cells, the damage repair of tumor cell DNA is disturbed by hyperthermia, making it unable to fully repair when damaged by chemotherapeutic drugs. As a result, hyperthermia enhances the efficacy of chemotherapeutic drugs. RBL1, as a tumor suppressor gene, may be associated with the repair of DNA damage, and thus it may be a key target for hyperthermia to enhance the sensitivity of thermosensitive cells to chemotherapeutic drugs.

17.
Front Nutr ; 9: 865991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495938

RESUMO

Green tea has distinct astringency, bitter taste, and typical green flavor because of its post-harvest treatment without withering and enzymatic oxidation. Microbial fermentation has been identified as a promising strategy that could give green tea infusion a special taste flavor. This might be linked to the metabolic transformation ability of microorganisms. In this study, starter culture of edible mushroom Pleurotus sajor-caju (oyster mushroom) was used for submerged fermentation of green tea infusion in order to improve its flavor and taste quality. The volatile profile determined by headspace solid-phase microextraction, coupled with gas chromatography mass spectrometry, showed that the contents of (Z)-2-penten-1-ol and methyl heptadienone in green tea infusion were decreased significantly by the fermentation with the basidiomycete P. sajor-caju (p < 0.01), which would alleviate the herbal and grass flavor of green tea infusion to a certain extent. Meanwhile, the contents of linalool and geraniol were increased 9.3 and 11.3 times, respectively, whereas methyl salicylate was newly produced after fermentation by P. sajor-caju, endowing the fermented tea infusion with a pleasant flower and fruit aroma. In addition, the polyphenol profile was determined using high-performance liquid chromatography equipped with ion trap mass spectrometry, and the results indicated that the contents of most polyphenols in green tea infusion decreased significantly after fermentation by P. sajor-caju. The reduction of catechins and anthocyanins in fermented green tea infusion alleviated the astringency and bitterness. Moreover, the antioxidant activity of fermented green tea infusion was obviously decreased, especially the DPPH-free radical-scavenging ability and the ferric-reducing power. However, it is noteworthy that the ABTS-free radical scavenging ability was improved compared with the unfermented one, indicating that the increased tea pigments and volatile metabolites (such as linalool and geraniol) after fermentation with P. sajor-caju may also contribute to the antioxidant capacity of fermented green tea infusion. Overall, the innovative approach driven by P. sajor-caju fermentation has achieved promising potential to manipulate the green tea flavor.

18.
Technol Cancer Res Treat ; 21: 15330338221082431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243940

RESUMO

Background: Malignant melanoma is a common malignant tumor and one of the tumors with the fastest growing incidence. The effect of microRNAs on the biological processing of malignant melanoma cells also have been reported. This study explores the ability of miR-498 to regulate the progression of malignant melanoma cells. Methods: The expression of miR-498 was detected by RT-qPCR. The proliferation, invasion, and migration of malignant melanoma cells were measured by cell counting kit-8, clone formation, and transwell assays. Flow cytometry assay detected the percentage of apoptotic cells. Western blot was used to detect the expression of markers related to epithelial-mesenchymal transition. The correction of miR-498 and UBE2T was explored by dual-luciferase assay and Western blot. Results: Overexpression of miR-498 inhibited the proliferation, invasion, migration, and induced cell apoptosis of M14 and A375 cells. In addition, the expression of epithelial-mesenchymal transition-related factors was altered by the overexpression of miR-498. miR-498 can directly target UBE2T 3'-UTR and inhibit UBE2T protein expression. The overexpression of UBE2T reversed the inhibitory effects of miR-498 on the progression of malignant melanoma cells. Furthermore, UBE2T mRNA was significantly highly expressed in malignant melanoma tissues. The high expression of UBE2T was associated with the poor overall survival rate of malignant melanoma patients. Conclusions: Altogether, our findings demonstrated that miR-498 significantly inhibited the proliferation, invasion, migration, and induced apoptosis of malignant melanoma cells and confirmed that miR-498 regulated malignant melanoma cell progression by targeting UBE2T.


Assuntos
Melanoma , MicroRNAs , Enzimas de Conjugação de Ubiquitina , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Melanoma Maligno Cutâneo
19.
Foods ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430908

RESUMO

Monascus pigments (MPs) are natural edible pigments with high safety and strong function, which have been widely used in food and health products. In this study, different types of tea extracts (rich in polyphenols) were used to regulate the biosynthesis of MPs. The results showed that 15% ethanol extract of pu-erh tea (T11) could significantly increase MPs production in liquid fermentation of Monaco's purpureus M3. Comparative transcriptomic and metabolomic analyses combined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to further explore the regulatory mechanism of T11 on the biosynthesis of MPs. Comparative transcriptomic analysis showed that there were 1503 differentially expressed genes (DEGs) between the Con group and the T11 group, which were mainly distributed in carbohydrate metabolism, amino acid metabolism, energy metabolism, lipid metabolism, metabolism of terpenoids and polyketides, etc. A total of 115 differential metabolites (DMs) identified by metabolomics between the Con and T11 groups were mainly enriched in glutathione metabolism, starch and sucrose metabolism, alanine, aspartic acid and glutamate metabolism and glycine, serine and threonine metabolism, etc. The results of metabolomics were basically consistent with those of gene transcriptomics, indicating that the regulatory effect of T11 on the biosynthesis of MPs is mainly achieved through affecting the primary metabolic pathway, providing sufficient energy and more biosynthetic precursors for secondary metabolism. In this study, tea extracts with low economic value and easy access were used as promoters of MPs biosynthesis, which may be conducive to the application of MPs in large-scale industrial production. At the same time, a more systematic understanding of the molecular regulatory mechanism of Monascus metabolism was obtained through multi-omics analysis.

20.
J Ren Nutr ; 32(2): 178-188, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688540

RESUMO

OBJECTIVE: Vascular calcification (VC) is an important risk factor for cardiovascular disease in maintenance hemodialysis (MHD) patients. Hyperphosphatemia and microinflammation statement are known major contributors to the development of VC; however, the mechanisms are unknown. The aims of this study were to explore the risk factors of VC in MHD patients and to explore whether high phosphate could increase the secretion of inflammatory cytokines via PiT-1 in monocytes. METHODS: A cross-sectional study was conducted on 65 MHD patients to assess the relevance of coronary artery calcification (CAC), inflammatory factors, serum phosphate, and sodium-dependent phosphate cotransporter (NPT) mRNA expression of peripheral blood mononuclear cells (PBMCs). Multivariate logistic regression analysis was used to analyze the predictors of CAC. The calcification effects of high phosphate (HP), TNF-α, and supernatants of healthy human monocytes treated with HP were further evaluated in cultured HASMCs. RESULTS: Diabetes, longer dialysis vintage, higher serum TNF-α levels, and PiT-1 mRNA expression of PBMCs) were independent risk factors of CAC in MHD patients. The mRNA levels of PiT-1 in PBMCs were positively correlated with serum phosphate, CAC scores, and Pit-2 mRNA levels of PBMCs. The expressions of TNF-α, IL-6, and PiT-1 in human monocytes were significantly increased in a dose-dependent manner after treatment with HP, which was subsequently inhibited by NPT antagonist phosphonoformic acid. Neither TNF-α alone nor supernatants of monocytes stimulated with HP promoted the expression of osteopontin and Runt-related transcription factor 2 (Runx2) or caused mineralization in human aortic smooth muscle cells, but combined with HP intervention, the calcification effects were markedly increased in human aortic smooth muscle cells and ameliorated by phosphonoformic acid treatment. CONCLUSION: Hyperphosphatemia directly increased the synthesis and secretion of TNF-α by monocytes may via PiT-1 pathway, resulting in elevated systemic inflammatory response, which may further aggravate VC induced by phosphate overload in MHD patients.


Assuntos
Hiperfosfatemia , Uremia , Calcificação Vascular , Células Cultivadas , Estudos Transversais , Feminino , Foscarnet/efeitos adversos , Foscarnet/metabolismo , Humanos , Hiperfosfatemia/complicações , Leucócitos Mononucleares/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Fosfatos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Fator de Necrose Tumoral alfa/genética , Uremia/complicações , Uremia/metabolismo , Calcificação Vascular/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA