Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667318

RESUMO

Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig's muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-ß-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation.


Assuntos
Antígenos Transformantes de Poliomavirus , Diferenciação Celular , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Suínos , Antígenos Transformantes de Poliomavirus/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Proliferação de Células , Desenvolvimento Muscular , Antígenos Virais de Tumores/metabolismo , Antígenos Virais de Tumores/genética , Vírus 40 dos Símios/genética
2.
Curr Pharm Biotechnol ; 24(15): 1964-1971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070797

RESUMO

BACKGROUND: Sodium new houttuyfonate (SNH) is an adduct of houttuyfonate, which is the main component of the common Chinese medicinal plant Houttuynia cordata. SNH has been widely used in antibacterial and anti-inflammatory treatments in clinics. However, the exact antimicrobial mechanism of SNH is still unclear, despite its mild direct antimicrobial activity in vitro. Objectives: The aim of this study is to investigate the effect and possible mechanism of SNH on macrophages against bacteria in vitro. METHODS: In this study, we assessed the antibacterial and anti-inflammatory effects of SNH on the RAW264.7 macrophage cell line against Pseudomonas aeruginosa, a major opportunistic pathogen. RESULTS: Firstly, we found that SNH showed minimal toxicity on RAW264.7 macrophages. Secondly, our results indicated that SNH effectively inhibited the inflammatory reaction of macrophages stimulated by P. aeruginosa. We also found that SNH improved the phagocytosis and killing effect of RAW264.7 macrophages against P. aeruginosa in vitro. Furthermore, our results revealed that SNH effectively inhibited the expression of the TLR4/NF-кB pathway in macrophage RAW264.7 co-incubated with P. aeruginosa in vitro. CONCLUSION: Based on our findings, SNH can significantly improve the phagocytosis of macrophages and inhibit the excessive release of inflammatory factors by repressing the TLR4/NF-кB pathway.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Antibacterianos/farmacologia , Macrófagos , Fagocitose , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA