Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Pharmacol Res ; 209: 107420, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293586

RESUMO

Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory ß subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 µM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.

2.
Cell Death Dis ; 15(8): 636, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214988

RESUMO

Perineural invasion (PNI) is a new approach of cervical cancer invasion and metastasis, involving the cross-talk between tumor and nerve. However, the initiating signals and cellular interaction mechanisms of PNI remain largely elusive. The nerve-sparing radical hysterectomy (NSRH) proposed to improve postoperative quality of life is only applicable to cervical cancer patients without PNI. Therefore, it is important to elucidate the underlying mechanisms initiating PNI, and suggest the effective biomarkers to predict PNI before NSRH surgery. Here, we found that PNI is the characteristic of advanced cervical cancer, and Schwann cells were the antecedent cells that initiating PNI. Further, neuropeptide neuromedin B (NMB) produced by cervical cancer cells was determined to induce PNI by reprogramming Schwann cells, including driving their morphological and transcriptional changes, promoting their proliferation and migration, and initiating PNI by secreting CCL2 and directing axon regeneration. Mechanistically, cervical cancer cells-produced NMB activated its receptor NMBR in Schwann cells, and opened the T-type calcium channels to stimulate Ca2+ influx through PKA signaling, which could be blocked by the inhibitor. Clinically, combined examination of serum NMB and CCL2 levels was suggested to effectively predict PNI in cervical cancer patients. Our data demonstrate that cervical cancer-produced NMB initiates the reprograming of Schwann cells, which then direct axon regeneration, thus causing PNI onset. The elevated serum NMB and CCL2 levels may be useful for the decision-making to nerve sparing during hysterectomy surgery of cervical cancer patients.


Assuntos
Invasividade Neoplásica , Neurocinina B , Células de Schwann , Neoplasias do Colo do Útero , Células de Schwann/metabolismo , Células de Schwann/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Humanos , Animais , Neurocinina B/metabolismo , Neurocinina B/análogos & derivados , Camundongos , Movimento Celular , Proliferação de Células , Linhagem Celular Tumoral
3.
Sci Adv ; 10(28): eadl5606, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985880

RESUMO

Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias , Sítio de Iniciação de Transcrição , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células/genética
4.
Curr Issues Mol Biol ; 46(7): 7730-7744, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057099

RESUMO

Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and post-transcriptional regulation. Moreover, PTBP1 has been implicated as a causal factor in tumorigenesis. However, the involvement of PTBP1 in cellular senescence, a key biological process in aging and cancer suppression, remains to be clarified. Here, it is shown that PTBP1 is associated with the facilitation of tumor growth and the prognosis in lung adenocarcinoma (LUAD). PTBP1 exhibited significantly increased expression in various cancer types including LUAD and showed consistently decreased expression in multiple cellular senescence models. Suppression of PTBP1 induced cellular senescence in LUAD cells. In terms of molecular mechanisms, the silencing of PTBP1 enhanced the skipping of exon 3 in F-box protein 5 (FBXO5), resulting in the generation of a less stable RNA splice variant, FBXO5-S, which subsequently reduces the overall FBXO5 expression. Additionally, downregulation of FBXO5 was found to induce senescence in LUAD. Collectively, these findings illustrate that PTBP1 possesses an oncogenic function in LUAD through inhibiting senescence, and that targeting aberrant splicing mediated by PTBP1 has therapeutic potential in cancer treatment.

5.
J Nutr Biochem ; 133: 109702, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39025456

RESUMO

Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.


Assuntos
Proliferação de Células , Células Epiteliais , Ácido Fólico , Metilnitronitrosoguanidina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Ácido Fólico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Masculino , Ratos , Esôfago/efeitos dos fármacos , Esôfago/metabolismo , Linhagem Celular , Ratos Sprague-Dawley , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle
6.
J Genet Genomics ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740258

RESUMO

Intronic polyadenylation (IPA) is an RNA 3' end processing event which has been reported to play important roles in cancer development. However, the comprehensive landscape of IPA events across various cancer types is lacking. Here, we apply IPAFinder to identify and quantify IPA events in 10,383 samples covering all 33 cancer types from The Cancer Genome Atlas (TCGA) project. We totally identify 21,835 IPA events, almost half of which are ubiquitously expressed. We identify 2761 unique dynamically changed IPA events across cancer types. Furthermore, we observe 8855 non-redundant clinically relevant IPA events, which could potentially be used as prognostic indicators. Our analysis also reveals that dynamic IPA usage within cancer signaling pathways may affect drug response. Finally, we develop a user-friendly data portal, IPACancer Atlas (http://www.tingni-lab.com/Pancan_IPA/), to search and explore IPAs in cancer.

7.
Nat Genet ; 56(5): 846-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641644

RESUMO

Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.


Assuntos
Metilação de DNA , População do Leste Asiático , Locos de Características Quantitativas , Feminino , Humanos , Masculino , População do Leste Asiático/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
8.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672455

RESUMO

In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.


Assuntos
Neoplasias , Transdução de Sinais , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transição Epitelial-Mesenquimal
9.
Sci Rep ; 14(1): 3292, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332112

RESUMO

Natural gas distributed energy is recognized as a pivotal means to enhance energy efficiency and mitigate carbon dioxide emissions through localized energy cascading. Positioned as a key option for advancing the Sustainable Development Goals, this system optimizes energy utilization near end-users. While maximizing energy efficiency, it is imperative to address potential environmental challenges. A thorough, comprehensive environmental assessment, facilitated by the life cycle assessment method, proves instrumental in meeting this standard. Employing this method enables an intuitive grasp of the environmental strengths and weaknesses inherent in natural gas distributed energy within the power structure. This insight serves as a foundation for informed project decision-making, fostering the growth of the industry. We selected six environmental impact assessment categories based on the CML 2001 method, and conducted the life cycle analysis across four stages. China's inaugural natural gas distributed energy demonstration project was chosen as a model case, and an environmental impact assessment inventory was established, utilizing survey data and literature for comprehensive data collection and analysis. Results from case testing yield environmental impact assessment outcomes, with a specific sensitivity analysis for stages with notable environmental impact factors. The study underscores that the operation phase has the highest environmental impact, comprising 78.37% of the total combined environmental impact, followed by the fuel production phase. Comparative analyses with coal-fired and conventional natural gas power generation, based on dimensionless literature data, reveal that abiotic resources depletion potential is the primary contributor to the environmental impact of 1 kWh of electricity product, constituting 52.76% of the total impact value, followed by global warming potential. Concrete strategies have been outlined for decision-making in both the operational and planning phases of natural gas distributed energy projects. The strengthening of policies is pinpointed towards grid connection and scale expansion.

10.
Nat Commun ; 15(1): 1729, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409266

RESUMO

Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.


Assuntos
Neoplasias , Transcriptoma , Humanos , Poliadenilação/genética , Estudo de Associação Genômica Ampla , Regiões 3' não Traduzidas/genética , Perfilação da Expressão Gênica , Neoplasias/genética
11.
Cancers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067392

RESUMO

Alternative splicing can produce transcripts that affect cancer development and thus shows potential for cancer diagnosis and treatment. However, intron retention (IR), a type of alternative splicing, has been studied less in cancer biology research. Here, we generated a pan-cancer IR landscape for more than 10,000 samples across 33 cancer types from The Cancer Genome Atlas (TCGA). We characterized differentially retained introns between tumor and normal samples and identified retained introns associated with survival. We discovered 988 differentially retained introns in 14 cancers, some of which demonstrated diagnostic potential in multiple cancer types. We also inferred a large number of prognosis-related introns in 33 cancer types, and the associated genes included well-known cancer hallmarks such as angiogenesis, metastasis, and DNA mutations. Notably, we discovered a novel intron retention inside the 5'UTR of STN1 that is associated with the survival of lung cancer patients. The retained intron reduces translation efficiency by producing upstream open reading frames (uORFs) and thereby inhibits colony formation and cell migration of lung cancer cells. Besides, the IR-based prognostic model achieved good stratification in certain cancers, as illustrated in acute myeloid leukemia. Taken together, we performed a comprehensive IR survey at a pan-cancer level, and the results implied that IR has the potential to be diagnostic and prognostic cancer biomarkers, as well as new drug targets.

12.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139250

RESUMO

The occurrence and development of tumors require the metabolic reprogramming of cancer cells, namely the alteration of flux in an autonomous manner via various metabolic pathways to meet increased bioenergetic and biosynthetic demands. Tumor cells consume large quantities of nutrients and produce related metabolites via their metabolism; this leads to the remodeling of the tumor microenvironment (TME) to better support tumor growth. During TME remodeling, the immune cell metabolism and antitumor immune activity are affected. This further leads to the escape of tumor cells from immune surveillance and therefore to abnormal proliferation. This review summarizes the regulatory functions associated with the abnormal biosynthesis and activity of metabolic signaling molecules during the process of tumor metabolic reprogramming. In addition, we provide a comprehensive description of the competition between immune cells and tumor cells for nutrients in the TME, as well as the metabolites required for tumor metabolism, the metabolic signaling pathways involved, and the functionality of the immune cells. Finally, we summarize current research targeted at the development of tumor immunotherapy. We aim to provide new concepts for future investigations of the mechanisms underlying the metabolic reprogramming of tumors and explore the association of these mechanisms with tumor immunity.


Assuntos
Reprogramação Metabólica , Neoplasias , Humanos , Transdução de Sinais , Vigilância Imunológica , Imunoterapia , Microambiente Tumoral
13.
Cancer Commun (Lond) ; 43(9): 1003-1026, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37434394

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) shed new light on triple-negative breast cancer (TNBC), but only a minority of patients demonstrate response. Therefore, adaptive immune resistance (AIR) needs to be further defined to guide the development of ICI regimens. METHODS: Databases, including The Cancer Genome Atlas, Gene Ontology Resource, University of California Santa Cruz Genome Browser, and Pubmed, were used to screen epigenetic modulators, regulators for CD8+ T cells, and transcriptional regulators of programmed cell death-ligand 1 (PD-L1). Human peripheral blood mononuclear cell (Hu-PBMC) reconstruction mice were adopted for xenograft transplantation. Tumor specimens from a TNBC cohort and the clinical trial CTR20191353 were retrospectively analyzed. RNA-sequencing, Western blotting, qPCR and immunohistochemistry were used to assess gene expression. Coculture assays were performed to evaluate the regulation of TNBC cells on T cells. Chromatin immunoprecipitation and transposase-accessible chromatin sequencing were used to determine chromatin-binding and accessibility. RESULTS: The epigenetic modulator AT-rich interaction domain 1A (ARID1A) gene demonstrated the highest expression association with AIR relative to other epigenetic modulators in TNBC patients. Low ARID1A expression in TNBC, causing an immunosuppressive microenvironment, promoted AIR and inhibited CD8+ T cell infiltration and activity through upregulating PD-L1. However, ARID1A did not directly regulate PD-L1 expression. We found that ARID1A directly bound the promoter of nucleophosmin 1 (NPM1) and that low ARID1A expression increased NPM1 chromatin accessibility as well as gene expression, further activating PD-L1 transcription. In Hu-PBMC mice, atezolizumab demonstrated the potential to reverse ARID1A deficiency-induced AIR in TNBC by reducing tumor malignancy and activating anti-tumor immunity. In CTR20191353, ARID1A-low patients derived more benefit from pucotenlimab compared to ARID1A-high patients. CONCLUSIONS: In AIR epigenetics, low ARID1A expression in TNBC contributed to AIR via the ARID1A/NPM1/PD-L1 axis, leading to poor outcome but sensitivity to ICI treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Antígeno B7-H1 , Estudos Retrospectivos , Proteínas Nucleares , Microambiente Tumoral/genética , Proteínas de Ligação a DNA , Fatores de Transcrição
14.
Front Oncol ; 13: 1093084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020869

RESUMO

Introduction: Brain metastases (BM) from lung cancer are heterogeneous, and accurate prognosis is required for effective treatment strategies. This study aimed to identify prognostic factors and develop a prognostic system exclusively for epidermal growth factor receptor (EGFR)-mutated lung cancer BM. Methods: In total, 173 patients with EGFR-mutated lung cancer from two hospitals who developed BM and received tyrosine kinase inhibitor (TKI) and brain radiation therapy (RT) were included. Univariate and multivariate analyses were performed to identify significant EGFR-mutated BM prognostic factors to construct a new EGFR recursive partitioning analysis (RPA) prognostic index. The predictive discrimination of five prognostic scoring systems including RPA, diagnosis-specific prognostic factors indexes (DS-GPA), basic score for brain metastases (BS-BM), lung cancer using molecular markers (lung-mol GPA) and EGFR-RPA were analyzed using log-rank test, concordance index (C-index), and receiver operating characteristic curve (ROC). The potential predictive factors in the multivariable analysis to construct a prognostic index included Karnofsky performance status, BM at initial lung cancer diagnosis, BM progression after TKI, EGFR mutation type, uncontrolled primary tumors, and number of BM. Results and discussion: In the log-rank test, indices of RPA, DS-GPA, lung-mol GPA, BS-BM, and EGFR-RPA were all significant predictors of overall survival (OS) (p ≤ 0.05). The C-indices of each prognostic score were 0.603, 0.569, 0.613, 0.595, and 0.671, respectively; The area under the curve (AUC) values predicting 1-year OS were 0.565 (p=0.215), 0.572 (p=0.174), 0.641 (p=0.007), 0.585 (p=0.106), and 0.781 (p=0.000), respectively. Furthermore, EGFR-RPA performed better in terms of calibration than other prognostic indices.BM progression after TKI and EGFR mutation type were specific prognostic factors for EGFR-mutated lung cancer BM. EGFR-RPA was more precise than other models, and useful for personal treatment.

15.
Sci Adv ; 9(14): eadf3264, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018400

RESUMO

Cryptic transcription initiation has been previously linked to activation of oncogenic transcripts. However, the prevalence and impact of cryptic antisense transcription from the opposite strand of protein-coding genes were mostly unknown in cancer. Applying a robust computational pipeline to publicly available transcriptome and epigenome datasets, we identified hundreds of previously unannotated cryptic antisense polyadenylated transcripts (CAPTs) that were enriched in tumor samples. We showed that the activation of cryptic antisense transcription was associated with increased chromatin accessibility and active histone marks. Accordingly, we found that many of the antisense transcripts were inducible by treatment of epigenetic drugs. Moreover, CRISPR-mediated epigenetic editing assays revealed that transcription of a noncoding RNA LRRK1-CAPT promoted LUSC cell proliferation, suggesting its oncogenic role. Our findings largely expand our understanding of cancer-associated transcription events, which may facilitate the development of novel strategies for cancer diagnosis and treatment.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Transcrição Gênica , Transcriptoma , Cromatina , RNA não Traduzido/genética , RNA Antissenso/genética
16.
Aging (Albany NY) ; 15(1): 70-91, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36585926

RESUMO

BACKGROUND: Vascular aging is one of the important factors contributing to the pathogenesis of cardiovascular diseases. However, the systematic epigenetic regulatory mechanisms during vascular aging are still unclear. Histone methyltransferase SET and MYND domain-containing protein 2 (Smyd2) is associated with multiple diseases including cancer and inflammatory diseases, but whether it is involved in endothelial cell senescence and aging-related cardiovascular diseases has not been directly proved. Thus, we aim to address the effects of Smyd2 on regulating angiotensin II (Ang II)-induced vascular endothelial cells (VECs) senescence and its epigenetic mechanism. METHODS AND RESULTS: The regulatory role of Smyd2 in Ang II-induced VECs senescence was confirmed by performing loss and gain function assays. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis was used to systematically screen the potential enhancer during VECs senescence. Here, we found that Smyd2 was significantly upregulated in Ang II-triggered VECs, and deficiency of Smyd2 attenuated senescence-associated phenotypes both in vitro and in vivo. Mechanically, Ang II-induced upregulation of Smyd2 could increase the mono-methylation level of histone 3 lysine 4 (H3K4me1), resulting in a hyper-methylated chromatin state, then further activating enhancers adjacent to key aging-related genes, such as Cdkn1a and Cdkn2a, finally driving the development of vascular aging. CONCLUSIONS: Collectively, our study uncovered that Smyd2 drives a hyper-methylated chromatin state via H3K4me1 and actives the enhancer elements adjacent to key senescence genes such as Cdkn1a and Cdkn2a, and further induces the senescence-related phenotypes. Targeting Smyd2 possibly unveiled a novel therapeutic candidate for vascular aging-related diseases.


Assuntos
Doenças Cardiovasculares , Histona-Lisina N-Metiltransferase , Humanos , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Células Endoteliais/metabolismo , Cromatina
17.
Cell Death Dis ; 13(9): 784, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096885

RESUMO

Retinoblastoma (RB) is the most common pediatric intraocular malignancy and is a serious vision- and life-threatening disease. The biallelic mutation of the retinoblastoma gene RB1 is the initial event in the malignant transformation of RB, but the exact molecular mechanism is still unclear. E2F transcription factors can be activated by RB1 loss of function and lead to uncontrolled cell division. Among E2F family numbers, E2F1 has higher expression abundance than E2F2 and E2F3 in RB clinical samples. By integrating E2F1 ChIP-seq data, RNA-seq profiling from RB samples and RNA-seq profiling upon E2F1 knockdown, together with pathway analysis, literature searching and experimental validation, we identified Cyclin-dependent kinases regulatory subunit 2 (CKS2) as a novel regulator in regulating tumor-associated phenotypes in RB. CKS2 exhibited aberrantly higher expression in RB. Depletion of CKS2 in Y79 retinoblastoma cell line led to reduced cell proliferation, delayed DNA replication and decreased clonogenic growth. Downregulation of CKS2 also slowed tumor xenograft growth in nude mice. Importantly, reversed expression of CKS2 rescued cancer-associated phenotypes. Mechanistically, transcription factor E2F1 enhanced CKS2 expression through binding to its promoter and CKS2 regulated the cancer-associated PI3K-AKT pathway. This study discovered E2F1/CKS2/PTEN signaling axis regulates malignant phenotypes in pediatric retinoblastoma, and CKS2 may serve as a potential therapeutic target for this disease.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias da Retina , Retinoblastoma , Animais , Quinases relacionadas a CDC2 e CDC28/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Humanos , Camundongos , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Retina/metabolismo , Retinoblastoma/patologia
18.
Environ Pollut ; 308: 119585, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728693

RESUMO

Microbially induced carbonate precipitation (MICP) is a technique used extensively to address heavy metal pollution but its micro-dynamic process remains rarely explored. In this study, A novel Cd-tolerant ureolytic bacterium DL-1 (Pseudochrobactrum sp.) was used to study the micro-dynamic process. With conditions optimized by response surface methodology, the removal efficiency of Cd2+ could achieve 99.89%. Three components were separated and characterized in the reaction mixture of Cd2+ removal by MICP. The quantitative-dynamic distribution of Cd2+ in different components was revealed. Five synergistic effects for Cd2+ removal were found, including co-precipitation, adsorption by precipitation, crystal precipitation on the cell surface, intracellular accumulation and extracellular chemisorption. Importantly, during Cd2+ removal by MICP, the phenomenon that crystalline nanoparticles adhere to the cell surface, but without any micrometer-sized precipitation encapsulated bacterial cells was observed. This indicated that the previously studied model of bacterial cells as nucleation sites for metal cation precipitation and crystal growth is oversimplified. Our findings provided valuable insights into the mechanism of heavy metals removal by MICP, and a more straightforward method for studying biomineralization-related dynamic process.


Assuntos
Cádmio , Metais Pesados , Bactérias/metabolismo , Cádmio/metabolismo , Carbonato de Cálcio/química , Carbonatos/química , Metais Pesados/metabolismo
19.
J Clin Endocrinol Metab ; 107(8): 2296-2306, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35521682

RESUMO

BACKGROUND: The pathogenesis of Cushing's disease (CD) is still not adequately understood despite the identification of somatic driver mutations in USP8, BRAF, and USP48. In this multiomics study, we combined RNA sequencing (RNA-seq) with Sanger sequencing to depict transcriptional dysregulation under different gene mutation backgrounds. Furthermore, we evaluated the potential of achaete-scute complex homolog 1 (ASCL1), a pioneer transcription factor, as a novel therapeutic target for treatment of CD and its possible downstream pathway. METHODS: RNA-seq was adopted to investigate the gene expression profile of CD, and Sanger sequencing was adopted to detect gene mutations. Bioinformatics analysis was used to depict transcriptional dysregulation under different gene mutation backgrounds. The function of ASCL1 in hormone secretion, cell proliferation, and apoptosis were studied in vitro. The effectiveness of an ASCL1 inhibitor was evaluated in primary CD cells, and the clinical relevance of ASCL1 was examined in 68 patients with CD. RNA-seq in AtT-20 cells on Ascl1 knockdown combined with published chromatin immunoprecipitation sequencing data and dual luciferase assays were used to explore downstream pathways. RESULTS: ASCL1 was exclusively overexpressed in USP8-mutant and wild-type tumors. Ascl1 promoted adrenocorticotrophin hormone overproduction and tumorigenesis and directly regulated Pomc in AtT-20 cells. An ASCL1 inhibitor presented promising efficacy in both AtT-20 and primary CD cells. ASCL1 overexpression was associated with a larger tumor volume and higher adrenocorticotrophin secretion in patients with CD. CONCLUSION: Our findings help to clarify the pathogenesis of CD and suggest that ASCL1 is a potential therapeutic target the treatment of CD. SUMMARY: The pathogenesis of Cushing's disease (CD) is still not adequately understood despite the identification of somatic driver mutations in USP8, BRAF, and USP48. Moreover, few effective medical therapies are currently available for the treatment of CD. Here, using a multiomics approach, we first report the aberrant overexpression of the transcription factor gene ASCL1 in USP8-mutant and wild-type tumors of CD. Ascl1 promoted adrenocorticotrophin hormone overproduction and tumorigenesis and directly regulated Pomc in mouse AtT-20 cells. Notably, an ASCL1 inhibitor presented promising efficacy in both AtT-20 and primary CD cells. Importantly, ASCL1 overexpression was associated with a larger tumor volume and higher adrenocorticotrophin secretion in patients with CD. Thus, our findings improve understanding of CD pathogenesis and suggest that ASCL1 is a potential therapeutic target the treatment of CD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Terapia de Alvo Molecular , Hipersecreção Hipofisária de ACTH , Hormônio Adrenocorticotrópico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Camundongos , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hipersecreção Hipofisária de ACTH/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas B-raf , Ubiquitina Tiolesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA