Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(28): 10973-10983, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37384457

RESUMO

Exfoliation and interfacial modification of two-dimensional (2D) polymeric carbon nitride (CN) are considerably vital for applications in photo/electrocatalysis fields. Here, a grinding-ultrasonic route was designed to construct nickel bis(chelate) complex (Ni(abt)2, abt = 2-aminobenzenethiolate)-modified CN ultrathin nanosheets. Under the assistance of the shear force derived from the grinding process, Ni(abt)2 was implanted into the interlamination of bulk CN, resulting in the formation of ultrathin CN (UCN) nanosheets. Simultaneously, Ni(abt)2 molecules were anchored on the surfaces of as-formed UCN nanosheets due to the π-π stacking interaction. Interestingly, compared with single Ni(abt)2 and UCN, the as-obtained Ni(abt)2/UCN nanosheets exhibited excellent photocatalytic hydrogen evolution capability. A molecule-semiconductor internal electron transmission mechanism was suggested for explaining the separation and transfer of electron-hole pairs. Density functional theory (DFT) calculations demonstrated that the interface-induced electron redistribution tuned the electron density and hydrogen adsorption of the active centers, thus enhancing the photocatalytic performance of the hybrid catalyst. In addition, the as-obtained Ni(abt)2/UCN nanosheets could also catalyze the reduction of nitroaromatics in the presence of NaBH4. It was found that under the simulated sunlight irradiation, the conversion efficiency of nitroaromatic compounds to amino aromatic ones was up to 97.3%, far higher than that under the condition without light irradiation (51.7%), suggesting that the photocatalytic-produced hydrogen took part in the reduction of nitroaromatic compounds.

2.
Inorg Chem ; 61(23): 8966-8975, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35652414

RESUMO

Facile and rapid detection of residual organic pesticides on the fruits and vegetables has recently drawn increased attention in the food safety field. Herein, a surfactant-assisted solvothermal route with subsequent post-modification was designed for the preparation of Eu3+-functionated Zn-BDC ultrathin nanosheets (labeled as Eu3+@Zn-MOF-NS, BDC: 1,4-benzenedicarboxylate) with the thickness of 5 nm. The as-obtained Eu3+@Zn-MOF-NS could be homogeneously dispersed in aqueous systems to form a highly-stable collosol. Under the UV excitation of 325 nm, the as-obtained Eu3+@Zn-MOF-NS displayed red photoluminescence emission of Eu3+ ions, which could be notably quenched by an organochlorine pesticide, 2,6-dichloro-4-nitroaniline (DCNA), without interferences from ions, organic small molecules, and other pesticides. The detection limit and Ksv were 0.17 µM (35 ppb) and 3.2 × 105 M-1 in the water system, respectively. Moreover, the present 2D Eu3+@Zn-MOF sensor was also employed for the detection of DCNA in Chaohu Lake water and tap water and in apple, cabbage, and pakchoi samples with the relative standard deviation (RSD) ranging from 4.74 to 9.77%. Further investigations revealed that the competitive absorption between DCNA and the as-obtained Eu3+@Zn-MOF-NS resulted in the fluorescence quenching of the probe.


Assuntos
Hidrocarbonetos Clorados , Estruturas Metalorgânicas , Praguicidas , Espectrometria de Fluorescência/métodos , Água , Zinco
3.
ACS Omega ; 2(4): 1505-1512, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023638

RESUMO

Multifunctional Fe3O4@resorcinol-formaldehyde resin/Cu2O composite microstructures (denoted as Fe3O4@RF/Cu2O microstructures) were successfully constructed via a simple wet chemical route that has not been reported so far in the literature. The as-obtained Fe3O4@RF/Cu2O microstructures were characterized using field-emission scanning electron microscopy, (high-resolution) transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, and X-ray energy dispersive spectroscopy. The investigations showed that the as-obtained microstructures presented not only excellent antibacterial activity to Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria) but also highly efficient catalytic ability for the reduction of 4-nitrophenol (4-NP) in a solution with excess NaBH4. Owing to the presence of Fe3O4, the antibacterial reagent and the catalyst could be readily collected from the mixed systems under the assistance of an external magnetic field. It was found that the as-obtained microstructures displayed good cycling stability in antibacterial and catalytic applications. Fe3O4@RF/Cu2O microstructures still retained more than 87% of the antibacterial efficiency after 5 cycles and 89% of the catalytic efficiency after 10 cycles.

4.
Luminescence ; 28(6): 948-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23281191

RESUMO

The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)-Tween 85-polyphenol system. Based on studies of ultraviolet-visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2((1)Δg)O2((1)∑g(-)). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)-Tween 85-citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds.


Assuntos
Aminoácidos/análise , Cério/química , Luminescência , Compostos Orgânicos/análise , Polissorbatos/química , Ácido Cítrico/química , Medições Luminescentes , Oxigênio/química , Polifenóis/química , Espectrofotometria Ultravioleta
5.
Nanoscale ; 3(1): 196-200, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21049133

RESUMO

In this paper, we employed a facile hydrothermal route to successfully synthesize nanosized nickel phosphide particles with controlled phases via selecting different surfactants at different temperatures and times. The phases of the as-obtained products were determined by X-ray powder diffraction (XRD) patterns and Rietveld refinement of XRD data. The morphologies of the products were characterized by (high resolution) transmission electron microscopy (HR/TEM) and field emission scanning electron microscopy (FESEM). Experiments indicated that pure Ni2P phase could be prepared when nontoxic red phosphorus and nickel dichloride were used as starting materials in the presence of polyvinylpyrrolidone (PVP, 30 K), sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) or polyethylene glycol 10000 (PEG-10000) at 160 °C for 10 h. When acrylamide (AM) was selected as the surfactant, however, pure Ni12P5 phase could be prepared by prolonging the reaction time to 20 h at 160 °C, or enhancing the reaction temperature to 180 °C for 10 h. Furthermore, the experiments indicated that the pure Ni2P phase possessed a stronger photocatalytic degradation ability than the pure Ni12P5 phase.


Assuntos
Nanopartículas/química , Níquel/química , Fósforo/química , Benzenossulfonatos/química , Catálise , Cetrimônio , Compostos de Cetrimônio/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fotólise , Polietilenoglicóis/química , Povidona/química , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA