Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 26(7): 3209-3217, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226612

RESUMO

Surgical image segmentation is critical for surgical robot control and computer-assisted surgery. In the surgical scene, the local features of objects are highly similar, and the illumination interference is strong, which makes surgical image segmentation challenging. To address the above issues, a bilinear squeeze reasoning network is proposed for surgical image segmentation. In it, the space squeeze reasoning module is proposed, which adopts height pooling and width pooling to squeeze global contexts in the vertical and horizontal directions, respectively. The similarity between each horizontal position and each vertical position is calculated to encode long-range semantic dependencies and establish the affinity matrix. The feature maps are also squeezed from both the vertical and horizontal directions to model channel relations. Guided by channel relations, the affinity matrix is expanded to the same size as the input features. It captures long-range semantic dependencies from different directions, helping address the local similarity issue. Besides, a low-rank bilinear fusion module is proposed to enhance the model's ability to recognize similar features. This module is based on the low-rank bilinear model to capture the inter-layer feature relations. It integrates the location details from low-level features and semantic information from high-level features. Various semantics can be represented more accurately, which effectively improves feature representation. The proposed network achieves state-of-the-art performance on cataract image segmentation dataset CataSeg and robotic image segmentation dataset EndoVis 2018.


Assuntos
Processamento de Imagem Assistida por Computador , Cirurgia Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Semântica
2.
Med Image Anal ; 76: 102310, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954623

RESUMO

Surgical instrument segmentation plays a promising role in robot-assisted surgery. However, illumination issues often appear in surgical scenes, altering the color and texture of surgical instruments. Changes in visual features make surgical instrument segmentation difficult. To address illumination issues, the SurgiNet is proposed to learn pyramid attention features. The double attention module is designed to capture the semantic dependencies between locations and channels. Based on semantic dependencies, the semantic features in the disturbed area can be inferred for addressing illumination issues. Pyramid attention is aggregated to capture multi-scale features and make predictions more accurate. To perform model compression, class-wise self-distillation is proposed to enhance the representation learning of the network, which performs feature distillation within the class to eliminate interference from other classes. Top-down and multi-stage knowledge distillation is designed to distill class probability maps. By inter-layer supervision, high-level probability maps are applied to calibrate the probability distribution of low-level probability maps. Since class-wise distillation enhances the self-learning of the network, the network can get excellent performance with a lightweight backbone. The proposed network achieves the state-of-the-art performance of 89.14% mIoU on CataIS with only 1.66 GFlops and 2.05 M parameters. It also takes first place on EndoVis 2017 with 66.30% mIoU.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Atenção , Semântica , Instrumentos Cirúrgicos
3.
Med Image Anal ; 70: 101920, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676097

RESUMO

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).


Assuntos
Processamento de Imagem Assistida por Computador , Laparoscopia , Algoritmos , Artefatos
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5735-5738, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947155

RESUMO

Segmentation for tracking surgical instruments plays an important role in robot-assisted surgery. Segmentation of surgical instruments contributes to capturing accurate spatial information for tracking. In this paper, a novel network, Refined Attention Segmentation Network, is proposed to simultaneously segment surgical instruments and identify their categories. The U-shape network which is popular in segmentation is used. Different from previous work, an attention module is adopted to help the network focus on key regions, which can improve the segmentation accuracy. To solve the class imbalance problem, the weighted sum of the cross entropy loss and the logarithm of the Jaccard index is used as loss function. Furthermore, transfer learning is adopted in our network. The encoder is pre-trained on ImageNet. The dataset from the MICCAI EndoVis Challenge 2017 is used to evaluate our network. Based on this dataset, our network achieves state-of-the-art performance 94.65% mean Dice and 90.33% mean IOU.


Assuntos
Processamento de Imagem Assistida por Computador , Instrumentos Cirúrgicos , Atenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA