Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(7): 1891-1902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958516

RESUMO

BACKGROUND: The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE: The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS: We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS: P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION: Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.


Assuntos
Trombose , Lesões do Sistema Vascular , Camundongos , Animais , Agregação Plaquetária , Plaquetas/metabolismo , Hemostasia , Trombose/genética , Trombose/prevenção & controle , Trombose/metabolismo , Difosfato de Adenosina/farmacologia , Integrinas/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo
2.
Purinergic Signal ; 10(4): 581-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25015314

RESUMO

Biased agonism describes a multistate model of G protein-coupled receptor activation in which each ligand induces a unique structural conformation of the receptor, such that the receptor couples differentially to G proteins and other intracellular proteins. P2Y receptors are G protein-coupled receptors that are activated by endogenous nucleotides, such as adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP). A previous report suggested that UTP may be a biased agonist at the human P2Y11 receptor, as it increased cytosolic [Ca2+], but did not induce accumulation of inositol phosphates, whereas ATP did both. The mechanism of action of UTP was unclear, so the aim of this study was to characterise the interaction of UTP with the P2Y11 receptor in greater detail. Intracellular Ca2+ was monitored in 1321N1 cells stably expressing human P2Y11 receptors using the Ca2+-sensitive fluorescent indicator, fluo-4. ATP evoked a rapid, concentration-dependent rise in intracellular Ca2+, but surprisingly, even high concentrations of UTP were ineffective. In contrast, UTP was slightly, but significantly more potent than ATP in evoking a rise in intracellular Ca2+ in 1321N1 cells stably expressing the human P2Y2 receptor, with no difference in the maximum response. Thus, the lack of response to UTP at hP2Y11 receptors was not due to a problem with the UTP solution. Furthermore, coapplying a high concentration of UTP with ATP did not inhibit the response to ATP. Thus, contrary to a previous report, we find no evidence for an agonist action of UTP at the human P2Y11 receptor, nor does UTP act as an antagonist.


Assuntos
Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Uridina Trifosfato/metabolismo , Astrocitoma/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos
3.
J Pharmacol Exp Ther ; 347(1): 38-46, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23908386

RESUMO

The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca(2+) mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or human embryonic kidney 293 cells transiently transfected with GPR17 alone or cotransfected with Gαq/i5, which links Gi-coupled receptors to the Gq-regulated phospholipase C (PLC) signaling pathway, or PLCε, which is activated by the Gα12/13 signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, coexpression experiments of GPR17 with cysteinyl leukotriene receptor 1 (CysLTR1) suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose, and LTC4 are not the cognate ligands of GPR17.


Assuntos
Cisteína/metabolismo , Leucotrienos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Nucleotídeos de Uracila/metabolismo , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Cisteína/farmacologia , Células HEK293 , Humanos , Leucotrienos/farmacologia , Nucleotídeos de Uracila/farmacologia , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia
4.
Am J Physiol Cell Physiol ; 304(3): C228-39, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23054062

RESUMO

The P2Y(4) receptor is selectively targeted to the apical membrane in polarized epithelial cell lines and has been shown to play a key role in intestinal chloride secretion. In this study, we delimit a 23 amino acid sequence within the P2Y(4) receptor C-tail that directs its apical targeting. Using a mutagenesis approach, we found that four hydrophobic residues near the COOH-terminal end of the signal are necessary for apical sorting, whereas two basic residues near the NH(2)-terminal end of the signal are involved to a lesser extent. Interestingly, mutation of the key hydrophobic residues results in a basolateral enrichment of the receptor construct, suggesting that the apical targeting sequence may prevent insertion or disrupt stability of the receptor at the basolateral membrane. The signal is not sequence specific, as an inversion of the 23 amino acid sequence does not disrupt apical targeting. We also show that the apical targeting sequence is an autonomous signal and is capable of redistributing the normally basolateral P2Y(12) receptor, suggesting that the apical signal is dominant over the basolateral signal in the main body of the P2Y(12) receptor. The targeting sequence is unique to the P2Y(4) receptor, and sequence alignments of the COOH-terminal tail of mammalian orthologs reveal that the hydrophobic residues in the targeting signal are highly conserved. These data define the novel apical sorting signal of the P2Y(4) receptor, which may represent a common mechanism for trafficking of epithelial transmembrane proteins.


Assuntos
Polaridade Celular/fisiologia , Citoplasma/metabolismo , Proteínas de Membrana/metabolismo , Receptores Purinérgicos P2/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Purinérgicos P2/genética , Transdução de Sinais
5.
J Cell Sci ; 123(Pt 14): 2512-20, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20592187

RESUMO

The P2Y(1) receptor is localized to the basolateral membrane of polarized Madin-Darby canine kidney (MDCK) cells. In the present study, we identified a 25-residue region within the C-terminal tail (C-tail) of the P2Y(1) receptor that directs basolateral sorting. Deletion of this sorting signal caused redirection of the receptor to the apical membrane, indicating that the region from the N-terminus to transmembrane domain 7 (TM7) contains an apical-sorting signal that is overridden by a dominant basolateral signal in the C-tail. Location of the signal relative to TM7 is crucial, because increasing its distance from the end of TM7 resulted in loss of basolateral sorting. The basolateral-sorting signal does not use any previously established basolateral-sorting motifs, i.e. tyrosine-containing or di-hydrophobic motifs, for function, and it is functional even when inverted or when its amino acids are scrambled, indicating that the signal is sequence independent. Mutagenesis of different classes of amino acids within the signal identified charged residues (five basic and four acidic amino acids in 25 residues) as crucial determinants for sorting function, with amidated amino acids having a lesser role. Mutational analyses revealed that whereas charge balance (+1 overall) of the signal is unimportant, the total number of charged residues (nine), either positive or negative, is crucial for basolateral targeting. These data define a new class of targeting signal that relies on total charge and might provide a common mechanism for polarized trafficking of epithelial proteins.


Assuntos
Aminoácidos Acídicos/química , Aminoácidos Básicos/química , Células Epiteliais/metabolismo , Sinais Direcionadores de Proteínas , Receptores Purinérgicos P2Y1/metabolismo , Sequência de Aminoácidos/genética , Aminoácidos Acídicos/genética , Aminoácidos Básicos/genética , Animais , Linhagem Celular , Polaridade Celular/genética , Clonagem Molecular , Cães , Células Epiteliais/patologia , Rim/patologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Sinais Direcionadores de Proteínas/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/genética
6.
Biochemistry ; 48(24): 5731-7, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19413336

RESUMO

Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis and are the lethal targets of beta-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-l-Ala-gamma-d-Glu-l-Lys-d-Ala-d-Ala, were synthesized to test specificity for three features of PBP substrates: (1) the presence or absence of an N(epsilon)-acyl group, (2) the presence of d-IsoGln in place of gamma-d-Glu, and (3) the presence or absence of the N-terminal l-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 x 10(5) M(-1) s(-1)) with the best of these substrates, with a pronounced preference (50-fold) for N(epsilon)-acylated substrates over N(epsilon)-nonacylated substrates. This observation suggests that NG PBP3 is specific for the approximately d-Ala-d-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity. NG PBP3 demonstrated low selectivity for gamma-d-Glu vs d-IsoGln and for the presence or absence of the terminal l-Ala residue. The implications of this substrate specificity of NG PBP3 with respect to its possible role in cell wall biosynthesis, and for understanding the substrate specificity of the LMM PBPs in general, are discussed.


Assuntos
Proteínas de Bactérias/química , Neisseria gonorrhoeae/enzimologia , Proteínas de Ligação às Penicilinas/química , Acilação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Parede Celular/metabolismo , Cinética , Modelos Moleculares , Neisseria gonorrhoeae/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptídeos/metabolismo , Especificidade por Substrato
7.
J Biol Chem ; 283(36): 24460-8, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18606819

RESUMO

Diadenosine 5',5'''-P1,P2-diphosphate (Ap2A) is one of the adenylic dinucleotides stored in platelet granules. Along with proaggregant ADP, it is released upon platelet activation and is known to stimulate myocyte proliferation. We have previously demonstrated synthesis of Ap2A and of two isomers thereof, called P18 and P24, from their high pressure liquid chromatography retention time, by the ADP-ribosyl cyclase CD38 in mammalian cells. Here we show that Ap2A and its isomers are present in resting human platelets and are released during thrombin-induced platelet activation. The three adenylic dinucleotides were identified by high pressure liquid chromatography through a comparison with the retention times and the absorption spectra of purified standards. Ap2A, P18, and P24 had no direct effect on platelet aggregation, but they inhibited platelet aggregation induced by physiological agonists (thrombin, ADP, and collagen), with mean IC50 values ranging between 5 and 15 microm. Moreover, the three dinucleotides did not modify the intracellular calcium concentration in resting platelets, whereas they significantly reduced the thrombin-induced intracellular calcium increase. Through binding to the purinergic receptor P2Y11, exogenously applied Ap2A, P18, and P24 increased the intracellular cAMP concentration and stimulated platelet production of nitric oxide, the most important endogenous antiaggregant. The presence of Ap2A, P18, and P24 in resting platelets and their release during thrombin-induced platelet activation at concentrations equal to or higher than the respective IC50 value on platelet aggregation suggest a role of these dinucleotides as endogenous negative modulators of aggregation.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Plaquetas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Glicoproteínas de Membrana/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , ADP-Ribosil Ciclase 1/genética , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/química , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Hemostáticos/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Células Musculares/metabolismo , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/metabolismo , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo , Estereoisomerismo , Trombina/farmacologia
8.
Cell Calcium ; 43(4): 344-55, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17707504

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an intracellular second messenger releasing Ca2+ from intracellular stores in different cell types. In addition, it is also active in triggering [Ca2+](i) increase when applied extracellularly and various underlying mechanisms have been proposed. Here, we used hP2Y(11)-transfected 1321N1 astrocytoma cells to unequivocally establish whether extracellular NAADP+ is an agonist of the P2Y(11) receptor, as previously reported for beta-NAD+ [I. Moreschi, S. Bruzzone, R.A. Nicholas, et al., Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes, J. Biol. Chem. 281 (2006) 31419-31429]. Extracellular NAADP+ triggered a concentration-dependent two-step elevation of [Ca2+](i) in 1321N1-hP2Y(11) cells, but not in wild-type 1321N1 cells, secondary to the intracellular production of IP(3), cAMP and cyclic ADP-ribose (cADPR). Specifically, the transient [Ca2+](i) rise proved to be related to IP(3) overproduction and to consequent Ca2+ mobilization, while the sustained [Ca2+](i) elevation was caused by the cAMP/ADP-ribosyl cyclase (ADPRC)/cADPR signalling cascade and by influx of extracellular Ca2+. In human granulocytes, endogenous P2Y(11) proved to be responsible for the NAADP+-induced cell activation (as demonstrated by the use of NF157, a selective and potent inhibitor of P2Y(11)), unveiling a role of NAADP+ as a pro-inflammatory cytokine. In conclusion, we provide unequivocal evidence for the activation of a member of the P2Y receptor subfamily by NAADP+.


Assuntos
Cálcio/metabolismo , NADP/análogos & derivados , Agonistas do Receptor Purinérgico P2 , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Quimiotaxia/fisiologia , ADP-Ribose Cíclica/metabolismo , AMP Cíclico/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , NADP/metabolismo , Receptores Purinérgicos P2/metabolismo
9.
J Biol Chem ; 281(42): 31419-29, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16926152

RESUMO

Micromolar concentrations of extracellular beta-NAD+ (NAD(e)+) activate human granulocytes (superoxide and NO generation and chemotaxis) by triggering: (i) overproduction of cAMP, (ii) activation of protein kinase A, (iii) stimulation of ADP-ribosyl cyclase and overproduction of cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer, and (iv) influx of extracellular Ca2+. Here we demonstrate that exposure of granulocytes to millimolar rather than to micromolar NAD(e)+ generates both inositol 1,4,5-trisphosphate (IP3) and cAMP, with a two-step elevation of intracellular calcium levels ([Ca2+]i): a rapid, IP3-mediated Ca2+ release, followed by a sustained influx of extracellular Ca2+ mediated by cADPR. Suramin, an inhibitor of P2Y receptors, abrogated NAD(e)+-induced intracellular increases of IP3, cAMP, cADPR, and [Ca2+]i, suggesting a role for a P2Y receptor coupled to both phospholipase C and adenylyl cyclase. The P2Y(11) receptor is the only known member of the P2Y receptor subfamily coupled to both phospholipase C and adenylyl cyclase. Therefore, we performed experiments on hP2Y(11)-transfected 1321N1 astrocytoma cells: micromolar NAD(e)+ promoted a two-step elevation of the [Ca2+]i due to the enhanced intracellular production of IP3, cAMP, and cADPR in 1321N1-hP2Y(11) but not in untransfected 1321N1 cells. In human granulocytes NF157, a selective and potent inhibitor of P2Y(11), and the down-regulation of P2Y(11) expression by short interference RNA prevented NAD(e)+-induced intracellular increases of [Ca2+]i and chemotaxis. These results demonstrate that beta-NAD(e)+ is an agonist of the P2Y(11) purinoceptor and that P2Y(11) is the endogenous receptor in granulocytes mediating the sustained [Ca2+]i increase responsible for their functional activation.


Assuntos
Granulócitos/metabolismo , NAD/química , Agonistas do Receptor Purinérgico P2 , Linhagem Celular Tumoral , Quimiotaxia , ADP-Ribose Cíclica/metabolismo , AMP Cíclico/metabolismo , Regulação para Baixo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Purinérgicos P2 , Transfecção
10.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 9): 971-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16929097

RESUMO

CEACAM1 is a cellular adhesion molecule whose protein expression is down-regulated in several carcinomas and which also contributes to the pathogenicity of Neisseria by acting as a receptor for Opa proteins. The crystal structure of the N-terminal (D1) domain of human CEACAM1 has been determined at 2.2 Angstrom resolution. The structure shows several differences compared with a lower resolution model of the same domain from mouse solved previously, especially in the functional regions. Mapping of the sites of mutations that lower or abolish the binding of CEACAM1 to Opa proteins shows a distinct clustering of residues on the GFCC'C'' face of the molecule. Prominent amongst these are residues in the C, C' and F strands and the CC' loop. A similar analysis shows that the region responsible for homophilic or heterophilic interactions of CEACAM1 is also on the GFCC'C'' face and overlaps partially with the Opa-binding region. This higher resolution structure of CEACAM1 will facilitate a more precise dissection of its functional regions in the context of neisserial pathogenesis, cellular adhesion and immune evasion.


Assuntos
Antígenos CD/química , Proteínas da Membrana Bacteriana Externa/fisiologia , Moléculas de Adesão Celular/química , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Sequência de Aminoácidos , Antígenos CD/fisiologia , Adesão Celular , Moléculas de Adesão Celular/fisiologia , Cristalografia por Raios X , Gonorreia/metabolismo , Humanos , Infecções Meningocócicas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
11.
J Biol Chem ; 281(32): 22992-3002, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16754672

RESUMO

Extracellular ATP and its metabolite adenosine regulate mucociliary clearance in airway epithelia. Little has been known, however, regarding the actual ATP and adenosine concentrations in the thin ( approximately 7 microm) liquid layer lining native airway surfaces and the link between ATP release/metabolism and autocrine/paracrine regulation of epithelial function. In this study, chimeric Staphylococcus aureus protein A-luciferase (SPA-luc) was bound to endogenous antigens on primary human bronchial epithelial (HBE) cell surface and ATP concentrations assessed in real-time in the thin airway surface liquid (ASL). ATP concentrations on resting cells were 1-10 nm. Inhibition of ecto-nucleotidases resulted in ATP accumulation at a rate of approximately 250 fmol/min/cm2, reflecting the basal ATP release rate. Following hypotonic challenge to promote cell swelling, cell-surface ATP concentration measured by SPA-luc transiently reached approximately 1 microm independent of ASL volume, reflecting a transient 3-log increase in ATP release rates. In contrast, peak ATP concentrations measured in bulk ASL by soluble luciferase inversely correlated with volume. ATP release rates were intracellular calcium-independent, suggesting that non-exocytotic ATP release from ciliated cells, which dominate our cultures, mediated hypotonicity-induced nucleotide release. However, the cystic fibrosis transmembrane conductance regulator (CFTR) did not participate in this function. Following the acute swelling phase, HBE cells exhibited regulatory volume decrease which was impaired by apyrase and facilitated by ATP or UTP. Our data provide the first evidence that ATP concentrations at the airway epithelial surface reach the range for P2Y2 receptor activation by physiological stimuli and identify a role for mucosal ATP release in airway epithelial cell volume regulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Brônquios/citologia , Células Epiteliais/citologia , Adenosina/química , Trifosfato de Adenosina/química , Brônquios/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Humanos , Luciferases/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2 , Staphylococcus aureus/metabolismo , Fatores de Tempo
12.
Br J Pharmacol ; 147(5): 459-67, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16299552

RESUMO

Analysis of the P2Y family of nucleotide-activated G-protein-coupled receptors has been compromised by the lack of selective high-affinity, high-specific-radioactivity radioligands. We have pursued quantification of the P2Y1 receptor through the development of a series of selective P2Y1 receptor antagonists. Recently, we synthesized 2-iodo-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2500), a selective, competitive antagonist that exhibits a Ki of 0.8 nM in competition-binding assays with [3H]MRS2279. A 3'-monophosphate precursor molecule, MRS2608, was radiolabeled at the 5' position with 32P using polynucleotide kinase and [gamma32P]ATP to yield [32P]MRS2500. [32P]MRS2500 bound selectively to Sf9 insect cell membranes expressing the human P2Y1 receptor (Sf9-P2Y1), but did not detectably bind membranes expressing other P2Y receptors. P2Y1 receptor binding to [32P]MRS2500 was saturable with a KD of 1.2 nM. Agonists and antagonists of the P2Y1 receptor inhibited [32P]MRS2500 binding in Sf9-P2Y1 membranes with values in agreement with those observed in functional assays of the P2Y1 receptor. A high-affinity binding site for [32P]MRS2500 (KD=0.33 nM) was identified in rat brain, which exhibited the pharmacological selectivity of the P2Y1 receptor. Distribution of this binding site varied among rat tissues, with the highest amount of binding appearing in lung, liver, and brain. Among brain regions, distribution of the [32P]MRS2500 binding site varied by six-fold, with the highest and lowest amounts of sites detected in cerebellum and cortex, respectively. Taken together, these data illustrate the synthesis and characterization of a novel P2Y1 receptor radioligand and its utility for examining P2Y1 receptor expression in native mammalian tissues.


Assuntos
Nucleotídeos de Desoxiadenina/metabolismo , Receptores Purinérgicos P2/análise , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Nucleotídeos de Desoxiadenina/síntese química , Masculino , Radioisótopos de Fósforo , Antagonistas do Receptor Purinérgico P2 , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y1
13.
Mol Microbiol ; 57(5): 1238-51, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16101998

RESUMO

The penC resistance gene was previously characterized in an FA19 penA mtrR penB gonococcal strain (PR100) as a spontaneous mutation that increased resistance to penicillin and tetracycline. We show here that antibiotic resistance mediated by penC is the result of a Glu-666 to Lys missense mutation in the pilQ gene that interferes with the formation of the SDS-resistant high-molecular-mass PilQ secretin complex, disrupts piliation and decreases transformation frequency by 50-fold. Deletion of pilQ in PR100 confers the same level of antibiotic resistance as the penC mutation, but increased resistance was observed only in strains containing the mtrR and penB resistance determinants. Site-saturation mutagenesis of Glu-666 revealed that only acidic or amidated amino acids at this position preserved PilQ function. Consistent with early studies suggesting the importance of cysteine residues for stability of the PilQ multimer, mutation of either of the two cysteine residues in FA19 PilQ led to a similar phenotype as penC: increased antibiotic resistance, loss of piliation, intermediate levels of transformation competence and absence of SDS-resistant PilQ oligomers. These data show that a functional secretin complex can enhance the entry of antibiotics into the cell and suggest that the PilQ oligomer forms a pore in the outer membrane through which antibiotics diffuse into the periplasm.


Assuntos
Farmacorresistência Bacteriana/genética , Proteínas de Fímbrias/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Substituição de Aminoácidos/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/ultraestrutura , Ácido Glutâmico/genética , Lisina/genética , Mutação de Sentido Incorreto , Neisseria gonorrhoeae/genética , Penicilinas/farmacologia , Transformação Bacteriana/genética , Transformação Bacteriana/fisiologia
14.
Biochem J ; 392(Pt 1): 55-63, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16038617

RESUMO

Penicillin-binding proteins (PBPs), which are the lethal targets of beta-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl-PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414-423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584-2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 A (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74-90 and a shift in residues 106-111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation.


Assuntos
Cisteína/metabolismo , Escherichia coli , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Cisteína/genética , Modelos Moleculares , Mutação , Proteínas de Ligação às Penicilinas/genética , Conformação Proteica
15.
Am J Physiol Cell Physiol ; 288(3): C624-32, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15525684

RESUMO

Eight human G protein-coupled P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(12), P2Y(13), and P2Y(14)) that respond to extracellular nucleotides have been molecularly identified and characterized. P2Y receptors are widely expressed in epithelial cells and play an important role in regulating epithelial cell function. Functional studies assessing the capacity of various nucleotides to promote increases in short-circuit current (I(sc)) or Ca(2+) mobilization have suggested that some subtypes of P2Y receptors are polarized with respect to their functional activity, although these results often have been contradictory. To investigate the polarized expression of the family of P2Y receptors, we determined the localization of the entire P2Y family after expression in Madin-Darby canine kidney (MDCK) type II cells. Confocal microscopy of polarized monolayers revealed that P2Y(1), P2Y(11), P2Y(12), and P2Y(14) receptors reside at the basolateral membrane, P2Y(2), P2Y(4), and P2Y(6) receptors are expressed at the apical membrane, and the P2Y(13) receptor is unsorted. Biotinylation studies and I(sc) measurements in response to the appropriate agonists were consistent with the polarized expression observed in confocal microscopy. Expression of the G(q)-coupled P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), and P2Y(11)) in lung and colonic epithelial cells (16HBE14o- and Caco-2 cells, respectively) revealed a targeting profile nearly identical to that observed in MDCK cells, suggesting that polarized targeting of these P2Y receptor subtypes is not a function of the type of epithelial cell in which they are expressed. These experiments highlight the highly polarized expression of P2Y receptors in epithelial cells.


Assuntos
Colo/citologia , Células Epiteliais/metabolismo , Rim/citologia , Pulmão/citologia , Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Células CACO-2 , Cálcio/metabolismo , Polaridade Celular , Colo/metabolismo , Cães , Células Epiteliais/citologia , Humanos , Rim/metabolismo , Pulmão/metabolismo , Microscopia Confocal , Nucleotídeos/metabolismo , Isoformas de Proteínas/genética , Sinais Direcionadores de Proteínas , Receptores Purinérgicos P2/genética
16.
J Gen Physiol ; 124(5): 513-26, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15477379

RESUMO

Extracellular ATP regulates several elements of the mucus clearance process important for pulmonary host defense. However, the mechanisms mediating ATP release onto airway surfaces remain unknown. Mitochondrial voltage-dependent anion channels (mt-VDACs) translocate a variety of metabolites, including ATP and ADP, across the mitochondrial outer membrane, and a plasmalemmal splice variant (pl-VDAC-1) has been proposed to mediate ATP translocation across the plasma membrane. We tested the involvement of VDAC-1 in ATP release in a series of studies in murine cells. First, the full-length coding sequence was cloned from a mouse airway epithelial cell line (MTE7b-) and transfected into NIH 3T3 cells, and pl-VDAC-1-transfected cells exhibited higher rates of ATP release in response to medium change compared with mock-transfected cells. Second, ATP release was compared in cells isolated from VDAC-1 knockout [VDAC-1 (-/-)] and wild-type (WT) mice. Fibroblasts from VDAC-1 (-/-) mice released less ATP than WT mice in response to a medium change. Well-differentiated cultures from nasal and tracheal epithelia of VDAC-1 (-/-) mice exhibited less ATP release in response to luminal hypotonic challenge than WT mice. Confocal microscopy studies revealed that cell volume acutely increased in airway epithelia from both VDAC-1 (-/-) and WT mice after luminal hypotonic challenge, but VDAC-1 (-/-) cells exhibited a slower regulatory volume decrease (RVD) than WT cells. Addition of ATP or apyrase to the luminal surface of VDAC-1 (-/-) or WT cultures with hypotonic challenge produced similar initial cell height responses and RVD kinetics in both cell types, suggesting that involvement of VDAC-1 in RVD is through ATP release. Taken together, these studies suggest that VDAC-1, directly or indirectly, contributes to ATP release from murine cells. However, the observation that VDAC-1 knockout cells released a significant amount of ATP suggests that other molecules also play a role in this function.


Assuntos
Trifosfato de Adenosina/farmacocinética , Ativação do Canal Iônico/fisiologia , Porinas/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Tamanho Celular , Células Cultivadas , Clonagem Molecular , Camundongos , Células NIH 3T3 , Pressão Osmótica , Proteínas Recombinantes/metabolismo , Canal de Ânion 1 Dependente de Voltagem , Canais de Ânion Dependentes de Voltagem
17.
J Biol Chem ; 279(12): 11456-64, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-14670966

RESUMO

UTP is a potent full agonist at both the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor. In contrast, ATP is a potent full agonist at the rP2Y(4) receptor but is a similarly potent competitive antagonist at the hP2Y(4) receptor. To delineate the structural determinants of agonism versus antagonism in these species homologues, we expressed a series of human/rat P2Y(4) receptor chimeras in 1321N1 human astrocytoma cells and assessed the capacity of ATP and UTP to mobilize intracellular Ca(2+). Replacement of the NH(2) terminus of the hP2Y(4) receptor with the corresponding region of the rP2Y(4) receptor resulted in a receptor that was activated weakly by ATP, whereas replacement of the second extracellular loop (EL2) of the hP2Y(4) receptor with that of the rP2Y(4) receptor yielded a chimeric receptor that was activated fully by UTP and near fully by ATP, albeit with lower potencies than those observed at the rP2Y(4) receptor. These potencies were increased, and ATP was converted to a full agonist by replacing both the NH(2) terminus and EL2 in the hP2Y(4) receptor with the corresponding regions from the rP2Y(4) receptor. Mutational analysis of the five divergent amino acids in EL2 between the two receptors revealed that three amino acids, Asn-177, Ile-183, and Leu-190, contribute to the capacity of EL2 to impart ATP agonism. Taken together, these results suggest that the second extracellular loop and the NH(2) terminus form a functional motif that plays a key role in determining whether ATP functions as an agonist or antagonist at mammalian P2Y(4) receptors.


Assuntos
Trifosfato de Adenosina/farmacologia , Receptores Purinérgicos P2/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Ratos , Receptores Purinérgicos P2/química , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Homologia de Sequência de Aminoácidos
18.
Purinergic Signal ; 1(1): 67-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18404402

RESUMO

The orphan receptor GPR80 (also called GPR99) was recently reported to be the P2Y(15) receptor activated by AMP and adenosine and coupled to increases in cyclic AMP accumulation and intracellular Ca(2+) mobilization (Inbe et al. J Biol Chem 2004; 279: 19790-9). However, the cell line (HEK293) used to carry out those studies endogenously expresses A(2A) and A(2B) adenosine receptors as well as multiple P2Y receptors, which complicates the analysis of a potential P2Y receptor. To determine unambiguously whether GPR80 is a P2Y receptor subtype, HA-tagged GPR80 was either stably expressed in CHO cells or transiently expressed in COS-7 and HEK293 cells, and cell surface expression was verified by radioimmunoassay (RIA). COS-7 cells overexpressing GPR80 showed a consistent twofold increase in basal inositol phosphate accumulation. However, neither adenosine nor AMP was capable of promoting accumulation of either cyclic AMP or inositol phosphates in any of the three GPR80-expressing cells. A recent paper (He et al. Nature 2004; 429: 188-93) reported that GPR80 is a Gq-coupled receptor activated by the citric acid cycle intermediate, alpha-ketoglutarate. Consistent with this report, alpha-ketoglutarate promoted inositol phosphate accumulation in CHO and HEK293 cells expressing GPR80, and pretreatment of GPR80-expressing COS-7 cells with glutamate dehydrogenase, which converts alpha-ketoglutarate to glutamate, decreased basal levels of inositol phosphates. Taken together, these data demonstrate that GPR80 is not activated by adenosine, AMP or other nucleotides, but instead is activated by alpha-ketoglutarate. Therefore, GPR80 is not a new member of the P2Y receptor family.

19.
Mol Pharmacol ; 63(4): 878-85, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12644589

RESUMO

Nucleotide stimulation of G(q)-coupled P2Y receptors expressed in Xenopus laevis oocytes produces the activation of an endogenous voltage-gated ion channel, previously identified as the transient inward (T(in)) channel. Expression of human P2Y(1), human P2Y(2), rat P2Y(6), human P2Y(11), or skate P2Y receptors in oocytes resulted in modulation of the voltage dependence and inactivation gating of the channel. Expression of the human P2Y(4) receptor, rat M(1)-muscarinic receptor, and human B(1)-bradykinin receptor did not alter the properties of the T(in) channel. Replacement of the C-terminal domain of the human B(1)-bradykinin receptor with the C-terminal domains of either the human P2Y(1) or human P2Y(2) receptor resulted in voltage dependence and inactivation-gating properties, respectively, of the T(in) channel that were similar to those elicited by the respective native P2Y receptor. Systematic truncation of the C-terminal region of the human P2Y(1) receptor identified a short region responsible for modulation of the T(in) channel. This region contains a conserved sequence motif found in all P2Y receptors that modulates the voltage dependence of the T(in) channel. Synthetic 20-mer peptides from the C-terminal domains of human P2Y(1) and P2Y(2) receptors produced a shift in the voltage dependence and slowed inactivation gating, respectively, after injection into oocytes expressing human B(1)-bradykinin or truncated human P2Y(1) receptors. These results indicate that certain P2Y receptors are capable of modulating the voltage sensitivity and inactivation gating of an endogenous oocyte ion channel through interactions involving the C-terminal region of the receptor. Such modulation of ion channel function could also exist in native mammalian cells that express P2Y receptors.


Assuntos
Canais Iônicos/fisiologia , Receptores Purinérgicos P2/metabolismo , Sequência de Aminoácidos , Animais , Bradicinina/metabolismo , Condutividade Elétrica , Eletrofisiologia , Dados de Sequência Molecular , Oócitos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Receptor B1 da Bradicinina , Receptores da Bradicinina/metabolismo , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y2 , Homologia de Sequência de Aminoácidos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA