Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 5(5): 328-339, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27110485

RESUMO

OBJECTIVE: Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. METHODS: We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. RESULTS: Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). CONCLUSIONS: These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as well as in a significant subpopulation of obese patients.

2.
Diabetologia ; 54(4): 888-99, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21210076

RESUMO

AIMS/HYPOTHESIS: Recent work has identified the important roles of M1 pro-inflammatory and M2 anti-inflammatory macrophages in the regulation of insulin sensitivity. Specifically, increased numbers of M2 macrophages and a decrease in M1 macrophages within the adipose tissue are associated with a state of enhanced insulin sensitivity. IL-10 is an anti-inflammatory cytokine and is a critical effector molecule of M2 macrophages. METHODS: In the present study, we examined the contribution of haematopoietic-cell-derived IL-10 to the development of obesity-induced inflammation and insulin resistance. We hypothesised that haematopoietic-cell-restricted deletion of IL-10 would exacerbate obesity-induced inflammation and insulin resistance. Lethally irradiated wild-type recipient mice receiving bone marrow from either wild-type or Il10-knockout mice were placed on either a chow or a high-fat diet for a period of 12 weeks and assessed for alterations in body composition, tissue inflammation and glucose and insulin tolerance. RESULTS: Contrary to our hypothesis, neither inflammation, as measured by the activation of pro-inflammatory stress kinases and gene expression of several pro-inflammatory cytokines in the adipose tissue and liver, nor diet-induced obesity and insulin resistance were exacerbated by the deletion of haematopoietic-cell-derived IL-10. Interestingly, however, Il10 mRNA expression and IL-10 protein production in liver and/or adipose tissue were markedly elevated in Il10-knockout bone-marrow-transplanted mice relative to wild-type bone marrow-transplanted mice. CONCLUSIONS/INTERPRETATION: These data show that deletion of IL-10 from the haematopoietic system does not potentiate high-fat diet-induced inflammation or insulin resistance.


Assuntos
Gorduras na Dieta/efeitos adversos , Inflamação/metabolismo , Interleucina-10/deficiência , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Linhagem Celular , Teste de Tolerância a Glucose , Inflamação/induzido quimicamente , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Interleucina-10/genética , Interleucina-10/farmacologia , Interleucina-10/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA